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Abstract

To improve the level of welding automation in 
the industry, there are increasing requirements for 
highly intelligent and accurate inspections of the 
welding process in real time. This paper proposed 
a new method for predicting weld dimensions 
based on binocular imaging information and a deep 
learning system. The binocular imaging information 
was acquired by binocular vision equipment and an 
image processing algorithm. A convolutional neural 
network structure was developed by adding a fully 
connected block and loss function judgment. A new 
calculating procedure was proposed to extract and 
link the information of the processed weld pool 
image and the weld parameters effectively. With the 
help of 7394 training samples, the results of 1849 
testing samples showed that the overall accuracy 
of the proposed model was higher than 93% for the 
prediction of weld dimensions, which could meet 
the requirements in practical applications.
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Introduction
Due to its advantages of high efficiency, good reliability, 

and ease of automation, gas metal arc welding (GMAW) has 
been widely applied in various modern equipment manu-

facturing industries, such as ships, automobiles, pressure 
vessels, pipeline welding, etc. (Refs. 1, 2). It is often combined 
with robots for automatic welding in practical industrial pro-
duction, but it is still difficult to achieve precise real-time 
regulation with machines during the complex welding pro-
cess (Ref. 3). To improve the intelligent automation level of 
welding technology, scholars have paid a lot of attention to 
monitoring and detecting of the welding process.

In welding research, the geometry of the weld bead is a 
vital factor in evaluating the quality of the weld bead (Ref. 
4). The method for predicting the status of the welding pro-
cess by using the optical, electrical, and acoustic signals is 
widely accepted. The neural network models provide fairly 
accurate results for static modeling in a simple and fast way 
(Ref. 5). Zeng et al. trained multilayer neural networks to pre-
dict the optimal welding parameters of manual gas tungsten 
arc welding (GTAW) based on materials, weld position, and 
joint preparation (Ref. 6). Pernambuco et al. identified the 
types of discontinuities in the welding process based on an 
artificial neural network (ANN) and arc sound signal (Ref. 7). 
Cui et al. utilized a multisensor sensing system and support 
vector machine (SVM) to identify the joint penetration status 
(partial joint, complete joint, and excessive penetration) of 
Keyhole Tungsten Inert Gas welding from the signals of arc 
sound, welding current, and arc voltage (Ref. 8). Nagesh et 
al. tried to predict the value of reinforcement, weld width, 
and joint penetration by an ANN and welding parameters. 
However, the results showed that the maximum predicting 
error reached up to 22.39% (Ref. 9). That meant weld pool 
information should be provided to exactly predict the status 
of the welding process. Zhang et al. pointed out that the weld 
pool surface provided essential information for the under-
standing of the welding process, which helped human welders 
to make correct decisions to adjust robot parameters (Ref. 
10). Therefore, the size of the weld pool surface is critical to 
the prediction of weld bead formation.

Lei et al. combined principal component analysis and a 
genetic algorithm to establish a neural network. They took 
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the weld pool surface’s morphology and welding param-
eters as inputs to predict the weld waist width and weld 
back width (Ref. 11). Chang et al. developed a melt depth 
prediction model by optimizing a back propagation neural 
network (BPNN) with a genetic algorithm. The welding cur-
rent, arc voltage, and weld pool characteristic parameters 
were used as inputs to predict joint penetration. Though the 
relative error of prediction was less than 4.6% (Ref. 12), the 
input data of weld pool width and length were easily affected 
by the capturing angle of a single camera. Martínez et al. 
established a welding geometry predicting framework for 
the GMAW process with a residual network (ResNet) model 
and support vector machine-kernel radial basis function. This 
predicting framework had a prediction error of ± 0.27 mm 
in the weld geometry (Ref. 13). Lu et al. proposed a molten 
pool online monitor model based on the video prediction 
framework (PredNet) and the convolutional classification 
network (LeNet-5). This model achieved 95% accuracy in 
predicting hump and penetration status, which provided 
a sufficient warning for the welding process (Ref. 14). For a 
single bevel GMAW with gap fluctuation, Nomura et al. built 
two types of convolutional neural network (CNN) models with 
the help of the top surface image of the weld pool to predict 
burn-through and joint penetration, respectively (Ref. 15). 
Comparing the results of actual and estimated penetration 
depth showed that the estimation accuracy still needed to be 
improved as the 11% value of absolute error in prediction was 
higher than 0.5 mm. Based on an active vision sensing system 
and the CNN, Cheng et al. proposed an innovative method to 
identify the penetration state of GTAW. The recognition accu-
racy could reach 98%. However, the laser reflection stripes 
in the above experiments were easily disturbed (Ref. 16).

Skilled welders can estimate the quality of welds based 
on the weld pool deformation they see. To reconstruct the 
three-dimensional (3D) information of weld pool deforma-
tion, Zhang et al. projected a structured light laser pattern 
lattice on the surface of the weld pool and imaged the spec-

ular reflection on an imaging plane to simulate the function 
of the welder’s eyes (Refs. 17–19). Based on welding and 
shape parameters of the top surface of the weld pool, the 
dynamic neural network model was developed to predict the 
backside width of the weld pool during pulsed GTAW. Test 
data results indicated that the average prediction error of 
backside width was less than 6.3% (Ref. 20). However, this 
method required ideal experimental conditions, and it was 
difficult to obtain the laser spot, which was reflected from 

Fig. 1 — Schematic diagram of the hardware system for the experiment.

Table 1 — Setup Parameters of the Two Cameras

Camera Parameters Value

Exposure time 35 μs

Aperture F5.6

Camera angle 30 ~ 38 deg

Working distance 200 ~ 300 mm

Capture frame rate 200 fps

Region of interest (ROI) 600 × 500 pixels
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Fig. 2 — Metallographic images of weld sections for parameter 27.

Table 2 — Welding Parameters

Test Sample No. Scheme of Test Orthogonal 
Scheme

A B C D

1 30 210 0.6 18 6, 2, 9, 9

2 25 270 0.85 12 1, 8, 8, 3

3 26 280 0.85 10 2, 9, 8, 1

4 33 210 0.75 16 9, 2, 6, 7

25 26 210 0.5 11 2, 2, 1, 2

26 32 270 0.8 17 8, 8, 1, 8

27 30 230 0.65 16 6, 4, 2, 7

80 26 270 0.8 18 2, 8, 7, 9

81 28 210 0.85 15 4, 2, 8, 6
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the large deformed and fluctuated weld pool. Liang et al. 
constructed a prismatic stereo vision system and proposed 
a two-step matching algorithm based on the Harris algo-
rithm, which efficiently reconstructed the weld pool surface 
in different penetration states for the pulsed gas metal arc 
welding process (Ref. 21). All the research mentioned above 
showed that there was an important correlation between 
the weld pool image and weld bead produced. In this paper, 
a prediction system of weld dimensions was proposed that 
included binocular vision equipment, an image processing 
system, and a deep learning system. The binocular vision 
equipment was utilized to capture the images of the weld pool 
from different shooting angles to avoid image distortion in the 
image processing process. The image processing system was 
applied to reconstruct the 3D weld pool image and transfer 
the 3D image into depth image. A further developed CNN 
structure was put forward to form the deep learning system 
and predict the weld dimensions based on the depth image 
of the weld pool and welding parameters. The model had 
high accuracy in predicting joint penetration, weld width, 
and reinforcement, which provides a foundation to monitor 
and control the welding process in real time in the future.

Experimental Design

Experimental Platform

As shown in Fig. 1, the entire hardware system of the exper-
iment was mainly composed of three parts: GMAW system, 
Hall-sensor system, and binocular vision equipment. The 
GMAW system contained a GMAW welding machine (Times 
NB350), a shielding gas supply system, and a 3D motion plat-
form, which carried the welding gun. The workpiece remained 
stationary during the welding process. The welding direction 
was set to the positive direction of the x coordina te axis as 
shown in Fig. 1. The binocular vision equipment consisted of 
two M3ST130 (M)-H CMOS cameras and ND 1000 neutral fil-
ters, which were placed in the front of the two camera lenses. 
The two cameras were arranged in the up-and-down direction 
and their clamping device could be precisely adjusted for the 
dip angle and position of the two cameras. In addition, the 
camera clamping device was fixed to the 3D motion platform 
to move synchronously with the welding gun, which meant 
the welding gun and CMOS cameras were relatively station-
ary. The two cameras captured the images of the weld pool 
from different perspectives simultaneously with the help of 
a synchronous trigger device. The setup parameters of the 
two cameras are shown in Table 1. The Hall-sensor system 
was composed of current and voltage sensors that collected 
electrical signals in real time at a frequency of 3000 Hz.

Experimental Design 

Bead-on-plate welding was carried out in the experiments. 
The dimension of the Q235 mild steel plate was 250 x 50 x 
5 mm, and the welding wire was H08Mn2Si solid wire with 
a diameter of 1.2 mm.

A

Fig. 3 — Weld pool image acquired within ± 0.05 s 
at the location of section III in Fig. 2. A — 9.842 s; 
B — 9.898 s; C — 9.942 s.

C

B

180-s | WELDING JOURNAL



The experiments were designed by the orthogonal exper-
imental design method and the factors consisted of welding 
current (200–280 A), arc voltage (25–33 V), nozzle height 
(10–18 mm), and welding speed (0.40–0.80 m/min). Each 
factor was divided equally into nine levels, and an L81 (94) 
orthogonal table was selected, as shown in Table 2. All the 
experiments were repeated two times.

Data Acquisition

The data acquired in the experiments included weld pool 
images, electrical parameters, weld width, joint penetration, 
and reinforcement. It was clear that the weld pool always 
oscillated during the whole GMAW process because of the 
variation of welding parameters and droplet transfer. Mean-
while, the heat dissipation and heat accumulation conditions 
were different when the welding arc continued moving on 
the different positions of the workpiece. As a result, there 

were small differences in the weld formation of different 
locations. For this paper, each weld joint was equally divided 
into six parts along its length (21 cm). Five different weld 
cross sections were obtained from each weld joint, as shown 
in Fig. 2, and their feature parameters are shown in Table 3. 

The values in Table 3 proved that the weld width, joint 
penetration, and reinforcement of the weld fluctuated at 
different positions of the weld joint, especially the joint pene-
tration. Though the weld pool always oscillated during welding 
processes, Fig. 2 shows the weld cross sections at position 
III’ and position III’’ were almost the same as the weld cross 
section at position III. It meant that each weld cross section 
corresponded to a series of fluctuating weld pool images 
that were acquired at the adjacent time, as shown in Fig. 
3. In this study, the adjacent time was set to be ± 0.05 s of 
shooting time for each weld cross section. As a result, 20 
pairs of continuous multiframe weld pool images were used 
to form 20 different 3D reconstructions of the weld pool 

Table 3 — Feature Parameters of Weld Cross Section at Different Positions of Fig. 2 (Unit: mm)

Position I II III’ III III’’ IV V

Joint  
penetration 3.3868 3.6126 3.3977 3.599 3.6099 3.5121 3.6371

Weld width 9.6246 9.7416 10.5386 10.5005 10.6719 9.7878 10.1904

Reinforcement 2.1601 2.3232 2.6768 2.6192 2.5517 2.4103 2.4456

Fig. 4 — Construction of the SURF-BRISK-KAZE feature descriptor.
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surface in the three-dimensional reconstruction section. 
All the above 3D reconstructions of the weld pool surface 
were corresponded to one weld cross section (many-to-one 
relationships).

Average welding electric parameters were calculated and 
utilized for the prediction of joint formation, which were 
expressed as:

𝐼𝐼!"# =
1
𝑛𝑛%𝐼𝐼$
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where Ii and Ui are the instantaneous welding current and 
arc voltage detected by the Hall current and voltage sensors, 
respectively. n is the data quantity (300 in this study), which 
was counted from –0.05 to +0.05 s relative to the shooting 
time of each weld cross section.

The normalized value of welding speed, nozzle height, aver-
age welding current, and average arc voltage was calculated 
to solve conflicting measurement units in the prediction of 
joint formation, which was expressed as:

𝑦𝑦, =
𝑦𝑦 − 𝑦𝑦"#$

𝑦𝑦"%& − 𝑦𝑦"#$
 

where y represents the real value of welding speed, nozzle 
height, average welding current or average arc voltage, and 
ymin and ymax are the minimum and maximum data, respec-
tively, of the above parameters in the whole experiments.

Image Processing

Three-Dimensional Reconstruction

To extract key characteristics of weld pool geometry, the 
SURF-BRISK-KAZE algorithm was utilized in the 3D weld 
pool reconstruction system (Refs. 22–24), which supplied 
enough feature points of the weld pool image. This algorithm 
mainly extracted feature points from the ripples of the weld 
pool surface that were generated by droplet impingement. 
To match the feature points of the binocular images of the 

(1)

(2)

(3)

Table 4 — Model Parameters

Parameter Value

Kernel size 3 × 3

Initialization method Kaiming initialization

Normalization Batch normalization

Dropout 0.5

Optimizer Adam

Loss function Mean squared error

Activation function Rectified linear unit

Fig. 5 — Three-dimensional reconstructed images at 
parameter 27. A — t = 9.842 s; B — t = 9.898 s; C —  
t = 9.942 s.

A B

C
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weld pool, the Euclidean distance between their descriptor 
was calculated as:

𝑑𝑑!,# = #$(𝑉𝑉$,!,% − 𝑉𝑉&,#,%)&
'(

%)$

 

where V1,m is the descriptor of feature point P1,m in the image 
of camera 1, and V2,n is the descriptor of feature point P2,n
in the image of camera 2. m is the serial number of feature 
points in the image of camera 1, and n is the serial number of 

feature points in the image of camera 2. i is the serial number 
of dimensional vectors in the descriptor of the feature point. 
It was clear that there were k values of dm,n for feature point 
P1,m if the number of feature points in the image of camera 2 
was k. The matching point in the binocular image of camera 
2 corresponding to P1,m was detected if

𝜀𝜀! =
𝑑𝑑!,!#$
𝑑𝑑!,%&!#$

< 0.5 

where dm,min means the minimum value of dm,n for feature 
point P1,m, and dm,semin means the second smallest value of 
dm,n for feature point P1,m.

(4)

(5)

Fig. 7 — The architecture of the traditional CNN 
model.

 Fig. 8 — Developed CNN architecture for prediction 
of weld dimensions.

A B

Fig. 6 — Nondimensionalization of 3D reconstructed images. A — 9.842 s; B — 9.898 s; C — 9.942 s.

C
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The descriptor V was expressed as:

𝑉𝑉 = (𝑉𝑉!, 𝑉𝑉", … , 𝑉𝑉#),						𝑖𝑖 = 1 − 64 

(V1…V64) was constructed by the SURF-BRISK-KAZE feature 
descriptor, as shown in Fig. 4. The feature point P(x, y) was 
considered as the center to generate the square region with 
a dimension of 20σs × 20σs. The main orientation of feature 
point P(x, y) pointed to a dominant vector of the summation 
of the Gaussian weighted Haar wavelet (Ref. 25). Then the 
square region was split into 4 × 4 subregions, and each sub-
region was divided into 5 × 5 small regions. Supposing the 
y-axis was along the main orientation of feature point P(x, 
y), there were four description vectors (Σ dx, Σ |dx|, Σ dy, Σ 
|dy|), which were calculated by the template of Haar wavelet 
and 25 small regions in the subregion of R. As a result, there 
were 64 description vectors in the 16 subregions of feature 
point P(x, y).

To improve the feature points matching the accuracy of 
the binocular images, an improved RANSAC algorithm was 
adopted to decrease the number of mismatching pairs (Ref. 
26). The conversion relationship between the pixel coordi-
nates of the matching point pairs and world coordinates was 
calculated by the preset coordinate system method to obtain 
the 3D point cloud of the weld pool. Then the LOWESS fitting 
algorithm was used to realize the 3D reconstruction of the 
weld pool surface, as shown in Fig. 5.

Nondimensionalization of the 3D 
Reconstructed Image

The results in Fig. 5 indicate that the point number was 
different in the reconstruction of different weld pool sur-
faces, which meant that the world coordinates of all matching 
points were hard to be at the input of the artificial intelligence 
network directly. 

To facilitate convolution calculation of the artificial 
intelligence network, the length (x) and width (y) of the 
reconstructed image were converted to 200 × 200 pixels 
and the deformation (z) of the reconstructed image was con-
verted to a gray value, as shown in equation 7. 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑃𝑃! = (𝑛𝑛 − 1) ∙ (

𝑥𝑥 − 𝑥𝑥"
𝑎𝑎 +

1
2)

𝑃𝑃# = (𝑛𝑛 − 1) ∙ (
𝑦𝑦 − 𝑦𝑦"
𝑎𝑎 +

1
2)

𝐺𝐺3𝑃𝑃!, 𝑃𝑃#5 = 128 ∙ (
𝑧𝑧
𝑏𝑏 + 1)

𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(𝑥𝑥" −
𝑎𝑎
2
, 𝑥𝑥" +

𝑎𝑎
2
, 𝑛𝑛)

𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(𝑦𝑦" −
𝑎𝑎
2 , 𝑦𝑦" +

𝑎𝑎
2 , 𝑛𝑛)

𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

 

where (x0, y0) are the center coordinates of the weld pool 
surface on xoy plane (unit mm), (Px, Py) are the pixel coor-
dinates of weld pool surface on xoy plane, G (Px, Py) is the 
nondimensionalization of weld pool deformation(z), and  

(6)

(7)

Table 5 — Global Training Parameters

Training Parameters Parameter Value Instructions

Image size 200 × 200 The size of the input image

Batch size 128 Number of samples captured 
in one training

Learning rate 0.001 Parameter update step

Table 6 — Predicting Accuracy of Traditional CNN Model

Weld Width Reinforcement Joint Penetration

Accuracy (%) 87.63 85.84 75.38
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a and b are the constants obtained by the weld pool length 
and width, respectively. In this study, the statistical results 
of the reconstructed weld pool showed its width varied from 
5 to 15 mm and its length varied from 5 to 14 mm in all the 
orthogonal tests, which indicated 16 mm was adequate for 
the value of a. Similarly, 3 mm was selected for constant b as 
all the concave depth of weld pool surfaces varied from –3 
to 3 mm (relative to the xoy plane). Linespace (x, y, n) means 
that n values are generated from x to y evenly, n is 200 in this 

study, and f(x, y) is the fitting formula for the reconstructed 
weld pool surface.

Based on the above calculating process, the 3D recon-
structed image was converted to a two-dimensional image 
with a uniform dimension of 200 × 200 pixels. The defor-
mation value of the weld pool surface was divided into 255 
steps, which are expressed as the gray value of the two- 
dimensional image, as shown in Fig. 6.

Improvement of CNN Structure
In this study, the matching groups of welding parameters, 

3D reconstructions weld pool, and weld cross-sectional labels 
formed 9243 effective samples (data set). The number of 
weld cross-sectional labels was 463. At the same time, the 
samples of the dataset were randomly disrupted to facilitate 
the model learning’s more-accurate features to prevent over-
fitting. Then the dataset was divided into a training dataset 
and a test dataset in the ratio of 8 (7394 groups):2 (1849 
groups), which were used to train and test the predicting 
model, respectively.

The network architecture of the traditional CNN model, 
which consisted of five convolutional blocks (ConvNets 1–5) 
and a fully connected block (LinNet1), is shown in Fig. 7. Each 
convolutional block included three convolutional layers and 
a max pooling layer. The main function of the convolutional 
block was to extract the features of the simulated depth 
images. The fully connected block was used to predict the 
weld width W, reinforcement H, and joint penetration P based 
on the features of the simulated depth images. 

A B

C D

Fig. 9 — Developed CNN model trained by different 
combinations of welding parameters. A — BPNN 
model with I, U, V, and T; B — developed CNN model 
with I and U; C — developed CNN model with I, U, and 
V; D — developed CNN model with I, U, and T; E — 
developed CNN model with I, U, V, and T.

E
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To improve the convergence speed and predicting accu-
racy of the model, the appropriate hyperparameters and 
corresponding optimization processes selected are shown 
in Table 4. The training parameters are shown in Table 5.

The predicting accuracy of the traditional CNN model was 
calculated by equation 8 and the results are shown in Table 6.

𝑃𝑃 = #1 −
|𝑦𝑦 − 𝑦𝑦!|

𝑦𝑦 ( × 100% 

 
where P is the predicting accuracy, y is the value of experi-
ments, and y’ is the predicting value of the CNN model.

The low accuracy of predicting results shown in Table 
6 indicated that the traditional CNN model needed to be 
improved as it only contained the information of 3D recon-
structed images. The welding parameters, such as welding 
current, arc voltage, welding speed, nozzle height, and 
gas flow, should be considered and introduced into the 
CNN model. The developed network structure of the CNN 
model was proposed and is shown in Fig. 8. A new fully con-
nected block (LinNet2) was added to the CNN model for the 
importing of welding parameters. W’, H’, and P’ are the weld 
width, reinforcement, and joint penetration, respectively, 

of the weld pre-estimated by LinNet1. I, U, V, and T are the 
optional normalized value of the local average welding current  
(± 0.05 s as mentioned in the data acquisition section), local 
average arc voltage, welding speed, and nozzle height. The 
function of LinNet 2 was to predict W, H, and P based on the 
welding parameters and the results of LinNet1. The weight 
parameters of ConvNets(1-5), LinNet 1, and LinNet 2 were 
optimized repeatedly to increase the predicting accuracy 
of the developed CNN model until the value of loss function 
was lower than 0.001 or the epoch was higher than 1000. 
The model parameters and training parameters are shown 
in Tables 4 and 5, respectively. The influence of gas flow on 
weld bead formation was not considered in this study as it 
was a constant throughout the whole experiment (argon, 
20 L/min).

Figure 9A shows the training results of the BPNN whose 
input was the electrical parameters (I, U, V, T), and the net-
work architecture was the same as LinNet2. Though the 
training accuracy curve and loss curve were very smooth, 
the training accuracy predicted by (I, U, V, T) was very low as 
the training data were only 7394 groups in this study. Figures 
9B–E show the loss curves and predicting accuracy curves of 
the developed CNN model trained by different combinations 
of welding parameters. Figure 9B shows the results of the 
developed CNN model with I and U. It shows that the training 
accuracies of weld width and reinforcement were less than 
80%, and the training accuracy decreased heavily when the 
epoch was higher than 800. The stability and accuracy of the 

(8)

Table 7 — Test Set Average Accuracy

Weld Shape Weld Width Reinforcement Joint Penetration

Accuracy (%) 97.93 96.99 93.90

Fig. 10 — Further developed CNN architecture for prediction of weld dimensions.
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training results were enhanced when the welding speed and 
nozzle height, respectively, were introduced into the devel-
oped CNN model, as shown in Figs. 9C and D. The relative 
optimal results when all the welding parameters (I, U, V, T) 
are considered in the block of LinNet 2 are shown in Fig. 9E. 
However, the training accuracies of weld width, reinforce-
ment, and joint penetration were still lower than 82.28%. 

The developed CNN architecture in Fig. 8 shows that the 
loss function was not introduced into LinNet 1, which meant 
the pre-estimated results of W’, H’, and P’ were only trained 
one time by ConvNets (1–5) and LinNet1 before they were 
introduced into LinNet2. As a result, the value of W’, H’, and 
P’ with large deviation was utilized in LinNet 2 to predict W, 
H, and P, which reduced the predicting accuracy of the weld 
dimensions, though (I, U, V, T) were collected in high accu-
racy. Therefore, a further developed CNN architecture for 
the prediction of weld dimensions was proposed, as shown 
in Fig. 10. A loss judgment was inserted between LinNet 1 
and LinNet 2 to increase the accuracy of W’, H’, and P’ before 
they were used in LinNet 2. ‘Loss 2 > = 0.01’ meant the weight 
parameters of ConvNets (1–5) and LinNet 1 still needed to be 
optimized to increase the accuracy of W’, H’, and P’. W0, H0, 
and P0 were the accurate values of W’, H’, and P’, respectively, 
when the loss was less than 0.01. Then this new model turned 
on the second fully connected block (LinNet2) to predict W, 
H, and P by W0, H0, P0, and the welding parameters. The final 

results were output when loss 1 was less than 0.001 or the 
epoch was larger than 1000. 

Results and Analysis
The further developed CNN model was trained and tested 

by Intel® CoreTM i7-8700 and NVIDIA GeForce RTX 3080Ti. All 
the codes were compiled based on Python software (version 
3.8). And the model was mainly built by PyTorch.

Training Results

Figure 11 shows the training accuracy curve and loss curve 
calculated by the further developed CNN model. It shows that 
the loss value, which had decreased to 0.01 when the epoch 
was only 10 times, declined rapidly. The loss value oscillated 
around 0.003 when the number of the epoch was higher than 
20. However, the minimum value of the loss was 0.00265 
(epoch = 29), which was larger than the desired value. The 
reasons were as follows: (1) There were only 7394 training 
samples used to optimize the weight parameters of ConvNets 
(1–5), LinNet 1, and LinNet 2; and (2) some welding param-
eters generated invalid data for training, as shown in Fig. 11, 
which meant the training samples distributed unevenly. As a 
result, more training data are needed to decrease loss value. 

Table 8 — Model Prediction Performance Evaluation

Evaluation Indicator Weld Width Reinforcement Joint Penetration

MAPE 2.09% 3.15% 5.55%

R2 score 0.85 0.81 0.87

Fig. 11 — Network training process curve with and without binocular vision. A — With 2D image of weld pool 
surface; B — with binocular vision.

A B
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Fig. 12 — The comparison of predicted and measured values for testing data. A — Weld width; B — weld 
reinforcement; C — joint penetration.
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The highest predicting accuracies of weld width, reinforce-
ment, and joint penetration were 97.67, 96.31, and 93.55%, 
respectively, in the further developed CNN model. To verify 
the necessary 3D reconstruction of weld pool surface in the 
prediction of weld dimensions, a single 2D image of weld pool 
surface with welding parameters was also used to predict 
the weld dimensions under the same numbers of training 
samples and testing samples. The results showed that the 
highest predicting accuracies of weld width, reinforcement, 
and joint penetration were 95.3, 91.8, and 87.05%, respec-
tively, and the minimum loss value was 0.0048. It is clear that 
the binocular vision method greatly improved the prediction 
capability of the further developed CNN model.

Model Performance Testing

Figure 12 shows the comparison of predicted and measured 
values for the weld width, reinforcement, and joint penetra-
tion of welds based on 1849 groups of testing data. Figures 
12A and B show that most of the predicted and measured 
data dots for weld width and reinforcement coincided, which 
indicated good prediction accuracy. Figure 12C shows that 
a low coincidence rate appeared in the low value of joint 
penetration.

Table 7 shows that the average predicting accuracies of 
weld width, reinforcement, and joint penetration were 97.93, 
96.99, and 93.90%, respectively. The prediction accuracy 
was calculated by Equation 8. The average processing time of 
each testing group was 17 ms. Further calculation showed that 
the average prediction accuracy of welding depth reached 
97.78% when joint penetration was greater than 1.5 mm, and 
it decreased to 65.54% when joint penetration was lower than 
1.5 mm. The reason was that 95% of data groups generated 
high joint penetration(> 1.5 mm) and only 5% of data groups 
generated low joint penetration(< 1.5 mm). The actual error 
between the predicted and measured value of joint penetra-
tion was less than 0.5 mm when joint penetration was lower 
than 1.5 mm. It means the training data for the low heat input 
should be increased in the future.

The network in this experiment was designed to solve the 
regression problem. The mean absolute percentage error 
(MAPE) and the coefficient of determination (R2_score) of the 
predicted value and the real value were used to evaluate the 
network model. The expressions of MAPE and R2_score were

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =&'
𝑦𝑦! − 𝑦𝑦*!
𝑦𝑦!
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!#$

×
100
𝑛𝑛  
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1
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"

!#$

 

𝑅𝑅! = 1 −
∑ (𝑦𝑦(" − 𝑦𝑦")!"
∑ (𝑦𝑦*" − 𝑦𝑦")!"

 

 
where yi is the true value of i th data, yi is the predicted value 
of i th data, yi is the true average value of test data, and n is 
the number of data in the test set. 

Equations 9–11 indicate that a small MAPE value meant 
a low error of the model prediction value. The larger the R2 

value, the better the fitting effect of the model. The MAPE 
values and determination coefficient values of weld width, 
reinforcement, and joint penetration, respectively, of this 
model are shown in Table 8. The values of MAPE were 2.09, 
3.15, and 5.55% for weld width, reinforcement, and joint pen-
etration, respectively. The values of the R2 _score were 0.85, 
0.81, and 0.87 for weld width, reinforcement, and joint pen-
etration, respectively. It was shown that the network model 
had a good prediction performance for the weld dimensions.

Conclusion
This paper predicts the section geometry of GMAW a weld 

of low carbon steel based on binocular stereo vision and a 
convolution neural network. 

1) A further developed CNN structure was designed. A 
training method was proposed to train the model by using 
the weld pool image first and then adding welding parameters 
to improve the accuracy of the model. The results showed 
that the loss curve under this method had stable fluctuation 
and rapid convergence, and the loss value could be reduced 
to 0.00265.

2) A method of transforming a 3D reconstructed weld pool 
image into a depth image was proposed, which facilitated 
the extraction of weld pool information by a convolution 
neural network.

3) The prediction accuracy of the developed model for weld 
width, reinforcement, and joint penetration reached 97.93, 
96.99, and 93.90%, respectively. When joint penetration 
was greater than 1.5 mm (accounting for 95% of the test 
set), the average prediction accuracy of joint penetration was 
97%. The prediction error of joint penetration was within an 
acceptable range. The average test time of one image was 17 
ms, which met the requirements of welding real-time feed-
back control and lays a foundation for realizing the real-time 
feedback of weld section size.
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