
Introduction
     The wide application of commercial
NiAl in engine construction is based
on its remarkable performance as a
material for high-temperature applica-
tions (Refs. 1, 2). This remarkable per-
formance is provided due to excellent
oxidation and corrosion resistance,
good thermal conductivity, high melt-
ing point, and low density of NiAl.
However, tribological applications of
this material are limited due to its low
strength and creep resistance under
high temperatures (Refs. 3–5). 
     It is proposed to introduce a
strengthening refractory phase into the
metallide NiAl and to use a dispersion
strengthening mechanism to increase

the deformation resistance and hard-
ness at a high temperature in order to
improve the wear resistance and widen
the application range of NiAl-based ma-
terials. This may be used in order to
raise the performance of engines.
     In recent years, a lot of NiAl-based
composite materials (CM) were devel-
oped (Refs. 5–23). The oxides and/or
carbides are used as strengthening
phases in these composites (Refs.
5–18). At the same time, only a few
studies have been carried out concern-
ing the tribological behavior of com-
posite materials of NiAl-MeB2 systems
(Refs. 19–23). Therefore, the borides
are promising candidates for high-
temperature applications due to their
high hardness, high corrosion, and

wear resistances (Refs. 24 –28).
     The results of previous investiga-
tions of developed composite materi-
als of NiAl-MeB2 systems show that
there is no intensive interaction be-
tween the intermetallic matrix and
boride additions (Refs. 29–31). The
microstructure of these materials is
characterized by homogeneous distri-
bution of the boride particles with ex-
cellent bonding to the NiAl matrix.
     This work is devoted to the investi-
gation of wetting and contact interac-
tion in the NiAl-MeB2 (Me is Zr, Ti, or
Cr) systems in order to select the most
appropriate strengthening of refracto-
ry phase.

Experimental Procedures
     The investigation of contact interac-
tion in the NiAl-MeB2 systems was car-
ried out using a sessile drop method
within the temperature range of
1650°–1670°C in a vacuum of 1.33 mPa.
Before wetting, the samples were de-
greased. The oxide films were removed
from refractory substrates with polish-
ing. Spreading of melt on the surface of
refractory substrate was recorded with
the help of a digital camera; therefore,
the contact angles were determined.
The process of wetting was conducted
up to the achievement of the stable con-
tact angle (for ~10 min).
     The composites were fabricated via
sintering of powder mixtures at
∼1850°C in a helium medium. The
high-temperature differential thermal
analysis (HDTA) was performed simul-
taneously with sintering. 
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     The microstructure studies, EDX-
and Auger-analysis of sessile drop test
of samples as well as fabricated com-
posite materials were performed using
JEOL JSM-840 and JEOL JAMP-
9500F microanalyzers, respectively. 
     In order to identify the new boride
phase, the developed NiAl-15%CrB2

composite material was analyzed using
XRD (Rigaku Ultima IV, Cu Kα
radiation).

Results and Discussion
     According to Kislyi (Ref. 32), the
composite material will have high
properties if two requirements are sat-
isfied. The first requirement, good
wetting, should be between the com-
ponents of CM. The second require-
ment, intensive interaction between
the components of composite materi-
al, which can result in formation of
new phases with poor properties,
should be absent. The contact (wet-
ting) angle is the main indicator of a
wetting between the components of
composite material (Refs. 33, 34).
Thus, determination of contact angles
using the sessile drop method is the
first step for the composite material
development process. 
     The stable wetting angle of 20 deg
in the NiAl-ZrB2 system was recorded

after 7 min —
Fig. 1A. In the
case of the NiAl-
TiB2 system, the
contact angle of
11 deg was
reached in 10 min
— Fig. 1B. The
best wetting was
observed in the
case of the NiAl-
CrB2 system —
Fig. 2. During the
first 3 min, the
angle reaches 22
deg and after 6
min the drop is
completely spread
out on the surface
with formation of
zero contact an-
gles — Fig. 1C.
     In order to
clarify the interaction between inter-
metallic and refractory compounds,
the EDX-analysis was performed on
sessile drop samples — Fig. 3.
     In the interaction zone of NiAl-ZrB2

samples, the identified phases corre-
sponding to the initial components are
namely ZrB2 (phase 2, Fig. 3A) and NiAl
(phase 1, Fig. 3A). The new phases were
not observed. The depth of the transi-
tion zone proved to be 70–100 m.

     The microstructure of the interac-
tion zone in the NiAl-TiB2 system was
also composed of two dominant phas-
es, namely TiB2 grains (phase 2, Fig.
3B) embedded in the NiAl melt (phase
1, Fig. 3B). The new phases were not
observed.
     The interaction zone was observed
for the NiAl-CrB2 system — Fig. 3C.
The dark gray (phase 3, Fig. 3C) CrB2

substrate (confirmed by EDX) had a
microhardness of 19.3 GPa (Table 1).

Fig. 1 — The contact angles in the NiAl-MeB2 systems. A — NiAl-
ZrB2 ; B — NiAl-TiB2; C —NiAl-CrB2.

Table 1 — Phase and Chemical Compositions of NiAl-Cr 2 System Interaction one (Sessile Drop Samples)

Chemical Composition, wt-% Phase Number Ni Cr B Al Phase Compositio Microhardness, GPa
Phases

White Phase 1 63 — — 37 NiAl 5.7
Light Gray Phase 2 2.5 51.5 46 — NiCrB 10.2

Dark Phase 3 0.7 46 53.3 — CrB2 19.3

A B

C
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The transition zone had a heteroge-
neous structure consisting of random-
ly oriented elongated light gray crys-
tals (phase 2, Fig. 3C) embedded in a
regularly distributed intermetallic
phase (phase 1, Fig. 3C). The light gray
crystallites of chromium boride doped
with nickel (confirmed by EDX) with
microhardness of 10.2 GPa (Table 1)
were the products of intermetallic/
chromium diboride interaction.
     Formation of chromium boride
phases doped with nickel was con-
firmed by the results of interactions in
Ni-Cr-B systems investigation (Refs.
35–41). For example, a new phase,
namely the CrB phase with composi-
tion Ni4.66-Cr45.52-B45.91-C3.91, was ob-
served during the Ni-Cr-B-Si coating
microstructure investigation (Ref. 35).
Ni-Cr-B phases with ≥60 at-% Ni
amount are called “Ni-rich boride” and
phases with ≤19 at-% Ni amount
called “Cr-rich boride.” These two
phases were obtained by Tokoro et. al.
(Ref. 37) and Yuan et al. (Ref. 40).
     The formation of a new chromium
boride phase doped with nickel from
CrB2 is shown in Fig. 4. One can see
that the chromium and boron are
present in the substrate (see the dark
gray in lower part of Fig. 4A) and in
the formed grains. A significant
amount of boron is also present be-
tween the grains (see the white re-
gions in Fig. 4A). The intensity of
boron distribution evidences a differ-
ence in the chromium/boron content

ratio in the substrate
(bottom part of the
figure) and the tran-
sition zone (Fig. 4C,
D), which confirms
the formation of the
Ni-Cr-B phase. Nick-
el was found in the
intergrain spaces
(NiAl phase) only.
The map of alu-
minum distribution
is similar to that of
nickel and is not 
presented — Fig. 4B. 
     In order to study
in detail the physical
and chemical com-
patibility of the in-
termetallic with
borides of zirconium,
titanium, and
chromium, the
HDTA was used for
powder mixtures of
NiAl-15% ZrB2, NiAl-
15% TiB2, and NiAl-
15% CrB2 — Fig. 5.
     High-temperature
differential thermal
analysis is often used
for detection of the
changes in the sam-
ple (either exother-
mic or endothermic). In our case, this
technique was used for detection of
quantity and temperature ranges of in-
tensive interactions between the NiAl

and borides. The upper curve of each
thermogram corresponds to the heat-
ing process and the lower curve to
cooling. Each of the thermogram

Fig. 2 — The kinetics of wetting in the NiAl-MeB2 systems. A —
NiAl-ZrB2 ; B — NiAl-TiB2 ; C — NiAl-CrB2.

Fig. 3 — Microstructure of interaction zones. A — NiAl-ZrB2 ; 
B — NiAl-TiB2 ; C — NiAl-CrB2.

AA

B

B

C

C
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peaks is a result of enthalpy changing,
which appears due to the processes of
melting or crystallization of system
components or formation of new
phases.
     The HDTA curves for the samples
of NiAl-15% ZrB2 (Fig. 5A) and NiAl-
15% TiB2 (Fig. 5B) are similar and
characterized by the same temperature
peaks (∼1640°C) corresponding to
melting and crystallization of the NiAl
intermetallic phase. This indicates the
absence of the formation of new
chemical compounds in these systems. 
     The peculiarities of NiAl-15% CrB2

samples (Fig. 5C) consist in the occur-
rence of two successive endothermic
reactions at 1530° and 1638°C during
heating of the powder mixtures. The
first peak may be related to the forma-
tion of a new phase owing to the inter-

metallic/chromium diboride interac-
tion followed by NiAl melting. Under
cooling, there were observed two
exothermic peaks that correspond to
crystallization of the intermetallic and
the new-formed phase. These results
are consistent with the data obtained
for the interaction contact zone in the
NiAl-15% CrB2 system — Fig. 4.
     The results obtained for wetting,
contact interaction, and HDTA make it
evident that the most interesting sys-
tem among the NiAl-MeB2 systems is
the one containing chromium diboride
due to zero contact angles of wetting
and formation of a new strengthening
phase that can additionally give rise to
the composite wear resistance. 
     The NiAl-CrB2 composite materials
were prepared. The initial powders of
NiAl and 15 wt-% of CrB2 were milled in

a planetary mill for 6 h. Then the pow-
ders were pressed and sintered at
1700°C in a helium atmosphere. The
structure of the sintered composites
was composed of a light gray NiAl ma-
trix (Fig. 6, phase 1), in which CrB2

grains (Fig. 6, phase 2) are regularly dis-
tributed. Dark gray inclusions of
chromium boride doped with nickel
(Fig. 6, phase 3) are the products of the
diboride/matrix interaction. According
to the data of the HDTA and XRD (Fig.
7) analyses, the new chromium boride
phase is the NiB/Cr3B4 eutectic. The ob-
tained results are confirmed by the data
of Campbell (Ref. 38), Fang (Ref. 41),
and Yuan (Ref. 40).
     According to the EDX analysis, the
composition of this new phase (in at-
%) is 1.68Ni-36.89Cr-58.9B. The mi-
crohardness of Ni-Cr-B equals 9.4 GPa,
somewhat between the hardess values
of NiAl and CrB2 (Table 1). The pres-
ence of such a phase additionally
strengthens the composite and may
positively affect the operation charac-
teristics of this material.
     The developed composite material
NiAl-15%CrB2 and plain metallide
NiAl were subjected to comparative
tribotechnical tests according to “pin-
on-disc” configuration using a fric-
tion machine CETR (now Bruker)
UMT-2 (Table 2). The tests showed
that introduction of chromium di-
boride into the metallide has positive
effect and leads to an increase in the
wear resistance by 2.9 times in com-
parison with that of NiAl in dry fric-
tion conditions — Fig. 8.

Conclusion 
     In order to justify the selection of
strengthening phase for NiAl-based
composites aiming to raise the wear
resistance, the peculiarities of wetting
and contact interaction in the NiAl-
ZrB2, NiAl-TiB2, and NiAl-CrB2 systems
have been studied. 
     It has been found that the most
promising strengthening phase is
chromium diboride since the wetting
in the NiAl-CrB2 system is character-
ized by zero angle. As the result of in-
terphase interaction, the Ni-Cr-B
phase is formed, which may be consid-
ered as an additional strengthening
agent for the composites.  
     The novel composite material,
NiAl-15%CrB2, was developed. 

Table 2 — Conditions of ribotestin

Load (N) Sliding Distance (m) Velocity (m/s) Temperature (°C) Counter-Body

80 1000 0.2 20 Steel Disc with
NiAl Coatin

Fig. 4 — A — Structure of interaction zone in the NiAl-CrB2 system. The following distribu-
tion can also be seen: B — Cr; C — B; D — Ni.

A B

C D
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Fig. 6 — Microstructure of the NiAl-15% CrB2 composite material.

Fig. 7 — XRD pattern of the NiAl-15%CrB2 composite material.

Fig. 8 — Wear of pins depending on the sliding distance. A — 
Intermetallic NiAl; B — composite NiAl-15% CrB2.
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