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Abstract

High-frequency (HF) induction welding is a 
practical welding technique widely used in various 
industries. Although it is generally robust, HF 
induction welding of aluminum tubes is complicated 
by the very high line speed, which requires high 
and accurate power input, and, therefore, a small 
fluctuation or variation in power input could result 
in drastically different welds. This work is dedicated 
to analyzing the influence of welding parameters, 
line speed, power input, and other unknown random 
factors, such as those induced by weather or work 
shift, especially those induced by the change of 
aluminum stock and adjustment/maintenance of 
the induction welding coil. Through the machine 
learning process, statistical models defining the 
normal operating windows were developed based 
on experimental data. The operating windows, 
defined by the overheat-normal and normal-cold 
boundaries, are expressed in terms of probabilities 
of producing normal welds. These trained models 
can be used to make new predictions, i.e., new 
operating windows, by collecting a small sample (a 
very limited number of calibrating data points). This 
procedure was verified experimentally.
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Introduction
Aluminum tube welding is an important industrial process, 

and a major application of this technique is manufacturing 
radiators for automotive vehicles and air conditioners. These 
tubes are usually exposed to high pressure, high temperature, 
and vibrational loading in service. Such stringent require-
ments impose a serious challenge to the joining process in 
aluminum tube making. Aluminum welding has been a chal-
lenge in general because of aluminum alloys’ high electrical 
and thermal conductivity, low melting temperature, and high 
thermal expansion coefficient (Ref. 1). The aluminum sheets 
used for making tubes for radiators are usually very thin  
(< 1 mm) with a limited allowable joining area, and a lap joint 
is difficult to attain. In addition, the high throughput of tube 
welding and stringent pressure tightness requirements com-
plicate the process. High-frequency (HF) induction welding, 
a forge welding process, is a proven suitable technique for 
thin aluminum tube welding, and it has been widely adopted 
in the industry. In induction welding, a HF electromagnetic 
field is generated in the workpieces through an induction 
coil. Under resistive heating and/or heating by the hysteresis 
and forging force, a bond is formed at the faying interface. As 
a relatively mature joining technique, HF induction welding 
finds its applications in a large number of industrial pro-
cesses, mainly because of its high tolerance to workpiece 
irregularities and process parameter variations. In HF induc-
tion welding, the induced heat is concentrated in a small 
volume of metal near the contact interface, so the process 
can produce welds at very high welding speed and with high 
energy efficiency.

Compared to low-frequency welding or resistance welding, 
HF welding requires much lower electric current and less 
power, with a narrow heat-affected zone and no superfluous 
cast structures (Ref. 2). It can be applied to welding both 
conventional steels and advanced high-strength steels. For 
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instance, 2-mm- (0.08-in.) thick DP 780 and TRIP 780 steel 
sheets were successfully induction-welded to produce tubes 
of 76 mm (3 in.) in diameter for automotive applications (Ref. 
3). Such tubes with butt-joint configuration could be fabri-
cated without much difficulty, largely because steel welding 
is generally robust, and welding thick sheet is especially 
forgiving. However, HF welding of thin aluminum tubes is chal-
lenging in general; a small variance in the induction weld coil 
setup, or slight fluctuation in line speed or power input may 
drive the process out of the acceptance zone. Efforts have 
been made to improve the robustness of aluminum-thin tube 
manufacturing. For instance, induction brazing of aluminum 
tubes for solar collectors was studied through numerical 
and experimental studies, and an efficient induction braz-
ing device was designed and optimal process parameters 

proposed (Ref. 4). Although the importance of controlling 
such a manufacturing process has been recognized by indus-
trial practitioners, its process control algorithms are largely 
developed through trial and error, which is ineffective, time 
consuming, and costly. New approaches are called for in 
tackling this issue.

Machine learning (ML) is an effective means in dealing with 
complicated processes and has been applied to a number 
of manufacturing processes (Refs. 5–10). For instance, 
self-piercing riveting has been extensively studied through 
ML-assisted process simulation and control (Refs. 5–9). 
Multiple regression analysis and artificial neural network 
(ANN) models were used to predict the weld strength of 
copper-to-copper joints produced by ultrasonic welding, 
and it was found that ANN models predict more-accurate 

Fig. 1 — Major fabrication steps in aluminum tube making.

Fig. 2 — Weld joint of a HF induction-welded aluminum tube (top view).
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results than conventional regression models (Ref. 10). Many 
welding processes have benefited significantly from adopt-
ing machine learning in-process control, as efficiency and 
accuracy have improved through intelligent welding qual-
ity monitoring and control (Ref. 11). In machine learning, 
unknown complicated processes have been treated largely 
as a black box, and new predictions are made through train-
ing and testing. Although this approach has been successful 
in dealing with many manufacturing processes, prediction 
accuracy may suffer if the training dataset is not large enough. 

In this work, operating windows of aluminum tube welding 
were developed based on machine learning. Appropriate 
general statistical models were selected to represent the 
operating window’s borders through training using experi-
mental observations. The general operating windows were 
then specified for a particular welding setting using a small 
sample of experimental data obtained under that setting. This 
approach is not only necessary for HF induction welding of 
thin aluminum tubes, it also effectively avoids lengthy trial 
and adjustment and reduces scrap metals. The methodology 
developed in this process can also be applied to other appli-
cations in dealing with highly variable industrial processes.

High-Frequency Induction Aluminum 
Tube Welding

In HF induction welding of thin aluminum tubes, alu-
minum sheets are cut into narrow strips, formed through 
a series of rolls, and fed into the induction coil. The main 
steps are illustrated in Fig. 1. The aluminum strip is pulled in 
by the rolls at a fairly high speed, close to 100 m/min. The 
deformed aluminum strip goes through the induction coils, 
is heated by the induced electric current, and is joined along 
the butt-joint contact line. Experiments have shown that 
the welding parameters, power input, and line speed are 
somehow related. But such a relation is hard to attain, as 
there are many random effects that are difficult to account 
for, let alone to control. It was observed that speed, power, 
or both had to be adjusted when a new coil of aluminum 
strips was loaded, the squeeze roll position was adjusted, or 
when the production line was restarted after a normal ter-
mination between work shifts. A more-severe impact comes 

with normal maintenance of the induction coil, be it cleaning, 
adjustment, or part replacement. A historically proven set of 
process parameters can only serve as a guideline for selecting 
the line speed and power input. The conventional one-factor- 
at-a-time approach does not work well in this case, as the 
trials needed to develop a reasonable set of parameters can 
be numerous, and it is unrealistic to develop a complete oper-
ating window or an optimized welding schedule every time 
a change occurs. 

The main quality requirement for these tubes was air 
tightness, which was tested through a pressure burst test. 
Figure 2 shows a section of aluminum tube made through 
the said induction welding process. Tubes of various cross- 
sectional shapes can be made through induction welding, and 
butt joints are usually used, as no special joint preparation 
is needed, and no material addition is necessary. However, 
the simple butt-joint configuration also poses a challenge 
to process stability. A small variation in fitup may create a 
root opening; slight underheating may produce a cold weld 
with insufficient joining strength; and slight overheating 
may render burn-through holes at the joint in addition to 
expulsion. In HF welding, material waste may result from poor 
fitup at the bonding interface and overheating in the form of 
expelled metal debris and burrs. Spattering during expulsion 
produces metal debris, which has to be removed, increasing 
production cost. Another consequence of overheating is dis-
tortion of the aluminum tubes produced, creating difficulties 
in assembly and resulting in leaking. These possible unde-
sirable situations are complicated by variations in material 
and welding coil setup.

Specimens of aluminum tube welds made of AA3003/
AA4045 clad sheets are presented in Figs. 3–5. Three types 
of welds were observed in production. A good weld, as seen 
in Fig. 3, has a clearly defined weld joint. A zoom-in of the 
weld joint shows scattering slagged metal debris on the weld 
joint but no burrs. The weld joint area is thickened due to 
induction heating and pressure exerted from the sides. The 
weld line is clear, fine, and uniform, indicating a quality joint. 
In contrast, when insufficient heat is supplied, the joining area 
is not sufficiently softened, leaving little or even no bonding 
— Fig. 4. The joint basically has no strength and no sealing 
capability. Although the heat is not enough to make a good 
joint, the amount of slags is visibly more than in a good weld. 

Fig. 3 — Specimens of a good weld. A — Top view; B — cross-sectional view of the joint’s cross section.

A B
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The insufficient heating leaves a continuous line inherited 
from the original surfaces at the butt joint. In an overheated 
joint, as seen in Fig. 5, much of the metal is wasted as slags 
and burrs. The thick burning marks on the weld joint surface 
are the evidence of too much heat supplied. In addition, there 
are also longitudinal as well as transverse cracks on the sur-
face of the weld joint, possibly due to the loss of expelled 
metal, and shrinkage during cooling. The bond line, seen 
from the cross section, contains a long crack that originates 
from the root opening at the butt joint, providing minimal 
joining strength. In general, the quality of a tube weld can 
be easily judged by its appearance, and visual inspection is 
commonly employed in welding parameter selection and 
welding machine setup. From these figures, it can be seen 
that the amount of heat input must be accurately controlled 
in order to create a quality weld.

Experiment
The experiments for training, calibrating, and testing 

of ML models were conducted at an industrial company’s 
production facility using the same type of aluminum sheets 
purchased from the same vendor over a period of one 
and a half years. 0.26-mm (0.01 in.) commercial sheets of 

AA3003 clad with AA4045 were used in production and 
the experiment. The commercial chemical compositions of 
this material are shown in Table 1. This ALCAD material is 
commonly used for products such as radiators because of 
its excellent high-temperature performance and corrosion 
resistance. In the experiment, line speed was varied between 
70 and 90 m/min, and power input (kW) was varied in accor-
dance to create a range of welds from cold to good/normal, 
and then to overheat welds. The level settings of welding 
schedules used in the experiment are presented in Figs. 6 
and 7. Five repetitions were made for each welding schedule 
in the experiment.

Adjusting welding parameters is necessary every time a 
seemingly minor adjustment is made to the production line. 
The current practice is selecting the line speed and weld-
ing power through trial-and-error on the production line. A 
number of trials have to be made, regardless of the practi-
tioner’s experience, although they have a huge impact on the 
time spent to find a suitable welding schedule. An important 
characteristic of aluminum tube welding is that the outcomes 
are fairly consistent once welding parameters are set for a 
particular welding coil setup in a particular job shift. Results 
of all the repetitions (five of them) made successively due 
to the constraint of production conditions were identical. 
Therefore, no information on variation or random error could 

Fig. 4 — Specimens of a cold weld. A — Top view; B — cross-sectional view of the joint’s cross section.

A B

Table 1 — Commercial Compositions of AA3003 and AA4045 (wt-%) (Ref. 12)

Alloy Si Mn Fe Cu Ti Ni Zn Al

AA3003 0.219 1.066 0.553 0.073 0.006 0.008 0.003 Bal.

AA4045 9.857 0.004 0.156 0.001 0.012 0.007 0.001 Bal.
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be obtained in the experiment. However, certain variation 
was observed between welding schedules.

Machine Learning Analysis, Results, 
and Discussion

In production, feasible welding schedules (parameters) 
were developed through experimental trials. Such a process 
is time-consuming and costly, and the developed welding 
schedules may not be optimal. In addition, it only produces 
a single welding schedule that may lie near the border of 
an operating window, and a small disturbance in operation 
conditions, such as line power fluctuation, may push weld-
ing out of the acceptance range, resulting in inferior welds. 
The significant effects caused by the largely uncontrollable 
variables require the use of the machine learning concept 
in developing optimal operating windows in HF induction 
welding of thin Al tubes. The machine learning approach 
employed in this study involved data collection, statistical 
model development, verification, and new operating window 
predictions.

Data

Six sets of structured data were collected in the span of 
more than one year. Numerous tooling changes/adjustments 
and daily changes of aluminum coils were made during this 
period. Although these six sets were obtained at different 
periods, the first three sets of experiments were conducted 
in the first two quarters of the year, the fourth and fifth sets 
were conducted in the last quarter of the first year, and the 
last set, set #6, was obtained one and a half years after the 
start of the experiment. Therefore, the data were grouped 
accordingly as G1 (sets 1, 2, 3), G2 (sets 4, 5), and G3 (set 6), 
and the first two were used for training. Part of the last data 
set, G3 was used for calibrating, and the rest of it was used 
for testing.

There were three types of distinctive outcomes in alu-
minum tube welding: cold weld, normal weld, and overheat 
weld. Each dataset contained all three types of welds, and 
they could be used either as a whole with all three types of 
welds together or separately using data points regrouped 
into two subsets: one contained cold and normal welds, and 
another contained normal and overheat welds.

Fig. 5 — Specimens of an overheated weld. A — Top view; B — cross-sectional view of the joint’s cross section. 

A B

Table 2 — Analysis of Deviance Results

Model Residual DF Residual Dev. DF Deviance p-value

M1 338 85.7072 6 286.6288 5.9835e–59

M2 336 33.3776 2 52.3295 4.3330e–12

M3 330 27.4642 6 5.9135 0.4329
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Modeling

In production of thin aluminum tubes, the only controlla-
ble process parameters are line speed and power, and they 
can be digitally and accurately controlled. They were used 
as regular factors in the analysis. All other factors, known/
unknown or controllable/uncontrollable, were lumped as an 
aggregated factor, known as setting. Factors and their values/
levels used in the modeling are the following:

Line speed: 70 ~ 90 m/min
Power: Varied in accordance with line speed to produce 

cold, normal, and overheat welds
Setting: Lumped effect of induction welding coil adjustment/ 

replacement, squeeze roll position, aluminum coil change, 
work shift, temperature, operator, and other unknown factors

Setting is very unique: It does not take any particular 
level or value, and it heavily affects weld quality. The work-
ing mechanisms of lumped variables, their influence, and 
even the number of such variables were largely unknown. 
Clearly, setting cannot be treated as a regular qualitative 
factor or a nuisance factor as its values/levels cannot be 
determined. Randomization does not help much, either, as 
its effect should be singled out, not averaged out. Therefore, 
it is hard to incorporate such a factor through conventional 
statistical analyses. Machine learning, on the other hand, 
has the advantages of dealing with situations such as this 
one, with complex and difficult-to-quantify influences, as it 
is able to detect patterns through experience derived from 
exposure to data. 

Generalized first order models for multinomial responses 
(Ref. 13) with three categories (cold, normal, overheat) have 
proven to be appropriate for dealing with situations like alu-
minum tube welding with categorical data. The first step is 
to determine which factors and their interactions should be 
included in the statistical models. The following three models 
were evaluated on datasets G1 and G2.

M1: response ~ speed + power + speed × power
M2: response ~ setting + speed + power + speed × power
M3: response ~ setting + speed + power + speed × power 

+ (speed + power + speed × power): setting
The welding-related factors, speed and power, are often 

termed together as welding schedule and treated as quanti-
tative variables, and setting was considered as a qualitative 
variable in the analysis. 

Model M1 assumes that setting has no effect. Model M2 
assumes that setting has a main effect but no interactions 
with other factors (i.e., it only causes the overheat-normal 
and normal-cold boundaries to shift up or down but does 
not change the shape of the boundaries). Model M3 assumes 
that setting has a main effect and interactions with other 
factors. In M3, the coefficients of speed, power, and speed 
× power may significantly change with setting. If M3 is the 
appropriate model, the boundaries would be different in 
shape every time when setting changes. Note that M1 is a 
sub-model of (or nested in) M2, and M2 is a sub-model of M3. 

If the experiment datasets supported M1, there would be a 
fixed operating window and no adjustment would be needed 
as setting has no place in this model. However, the experi-

Fig. 6 — Probabilities of obtaining 50% normal welds created through training using G1 (A) and G2 (B).

A B
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mental observations clearly showed otherwise. If the data 
supported M2, new data would only be needed at a specific 
speed in order to develop a new operating window by shifting 
the boundaries up or down, with their shapes unchanged. 
If the data supported M3, new training data would have to 
be collected at multiple speeds (speed = 70, 75, 80, 85, 90 
m/min for instance) in order to determine the shapes and 
locations of the new operating window boundaries. In other 
words, if M3 was the appropriate model, all the previously 
collected data would have been useless in determining new 
operating windows and the model would have to be retrained 
every time when setting changes.

Model Selection

An analysis of deviance was conducted in order to evaluate 
the fits of these models and determine the most appropriate 
model among the three for the combined datasets of G1 and 
G2. The results are listed in Table 2. 

A model with a small p-value indicates a good fitting of the 
model to the data. However, the appropriateness of a model 
should not be judged solely by its p-value; engineering sense 
plays a more-crucial role. Among the three models, M1 had 
a very small p-value, yet it was not an appropriate model 
as it does not contain setting. Its extremely small p-value 
showed that speed and power are crucial in interpreting the 
categorical response, which is of no surprise. M2 is the best 
among these three models, not only because its p-value was 
very small but because it reflected the influence of all factors 

involved. Compared to M2, the more sophisticated model 
M3 did not improve the fit at all, and the simpler model M2 
was preferred. M2 appears to be the most appropriate for 
the combined dataset and would be used for modeling the 
responses; i.e., the probabilities of getting certain outputs 
(cold welds, normal welds, and overheat welds).

Training

Using datasets G1 and G2, model M2 was fitted to estimate 
the probabilities of getting three categories of welds in induc-
tion welding of aluminum tubes. The estimated probabilities 
are denoted by p0 for cold welds, p1 for normal welds, and 
p2 for overheat welds, respectively, where p0 + p1 + p2  = 1. 
They are linked with the fitted coefficients of the generalized 
first order models by 

�̂�𝑝! =
"#$	('(!)
*+"#$	('(!)

,  �̂�𝑝, =
"#$	('(")
*+"#$	('(")

,  �̂�𝑝* = 1 − �̂�𝑝! − �̂�𝑝, 

 
where η0 and η2 are coefficients of the probabilities, rep-
resenting the selected model (i.e., model M2) for the 
relationship among the process parameters. The logistic 
models were trained using both the whole dataset and sub-
sets of G1 and G2. It was observed that for both G1 and G2, 
the models developed (i.e., η0 and η2 derived) using these 
two data sets were effectively identical and, therefore, only 
one of the datasets was needed. The fitted logistic models 

⌃
⌃

⌃
⌃ ⌃⌃

(1)

⌃ ⌃

⌃ ⌃

Fig. 7 — Probabilities of obtaining 90% normal welds created through training using G1 (A) and G2 (B).

A B
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for p0 and p2, derived separately using the subsets of each 
data set, are presented here.

For dataset G1, the fitted coefficients were

�̂�𝜂! = −222.509 + 5.229	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8.484	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 − 0.412	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 
�̂�𝜂" = 80.256 − 5.857	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 24.780	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 + 0.256	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 

 
and for dataset G2, the fitted coefficients were

�̂�𝜂! = −224.005 + 5.229	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8.484	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 − 0.412	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 
�̂�𝜂" = 96.392 − 5.857	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 24.780	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 + 0.256	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 

 

Note that in these fitted models, the coefficients of speed, 
power, and speed × power were the same even as the models 
were trained using different datasets; only the intercept terms 
were affected by the data used. Such an observation indi-
cates that the probability distribution of normalized data 
and its dependence on speed and power do not change for 
both the cold-normal and normal-overheat boundaries. In 
terms of operating windows, this means that the shape of 
an operating window does not change; only its location and 
width change with the data used. An operating window’s 
location and width are determined by the intercepts in η0 and 
η2, which can be derived using a small number of data points. 
Therefore, it is possible to predict an operating window in 
terms of its boundaries between normal and inferior welds 
when any changes in setting, such as aluminum coil change, 
induction welding coil adjustment, etc., are made using very 
few data points.

Figures 6 and 7 present the operating windows drawn 
using the models derived from fitting using datasets G1 and 
G2. The borders of the operating windows were drawn as the 
probabilities of getting 50% normal welds with the upper 
and lower boundaries corresponding to (p0, p1, p2) = (0.0, 
0.5, 0.5) and (p0, p1, p2) = (0.5, 0.5, 0.0) (Fig. 6), and to (p0, 
p1, p2) = (0.0, 0.9, 0.1) and (p0, p1, p2) = (0.1, 0.9, 0.0) (Fig. 7). 
The figures also show the 95% confidence intervals of the 
borders. A few observations can be made through examining 
these two figures:

1. The statistical boundaries were consistent with the 
shapes revealed by the data, indicating a good fit of the 
models to the training data.

2. Although the two operating windows created using 
G1 and G2 had different sizes (widths) and were placed at 
different locations, their borders were of exactly the same 
shape, consistent with the observations made from Equa-
tions 2 and 3. 

3. It is also worth noting that the operating windows 
derived from G1 and G2 had no overlap, meaning that past 
experience, although rendering important shape information, 
is of little help for determining the location and width of a new 
operating window. Therefore, a new operating window has to 
be derived every time the setting changes, with borders of 
the same shape, but location/width derived using new data.

4. The 50% normal weld operating windows shown in Fig. 
6 were wider than those of 90% normal welds in Fig. 7, as 
one would expect. This is due to the fact that making a good 
weld with high confidence requires tighter or more-precise 
control. From a practical point of view, a 90% normal weld 

window is preferable to a 50% normal weld window, as it 
provides higher confidence of producing quality welds. In 
addition, the windows produced through training dataset G2 
were much narrower than those using G1 for both 50% and 
90% normal welds. In general, a wide operating window is 
preferred, as a narrow or tight operating window leaves little 
room for process fluctuation.

5. The borders of the operating windows, although not 
completely linear, were fairly straight, as seen in all the fig-
ures. As the power input and line speed together determine 
the energy input rate, this observation indicates that the rate 
of energy input, or heating rate, should be kept roughly con-
stant in order to produce a reasonable weld. As the heating 
rate is proportional to the power input and dwell time and 
the latter is inversely proportional to line speed, the heating 
rate can be approximately expressed as

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 ∝
𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟

𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒	𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠 

Therefore, the boundaries in an operating window can be 
produced once the maximum heating rate and minimum heat-
ing rate, corresponding to normal-overheat and normal-cold 
boundaries, respectively, are determined. The difference in 
locations of operating windows created using different data-
sets can be understood as the result of variation in heating 
conditions caused by changes in setting.

Calibration and Prediction

As the statistical models for the operating windows were 
proven adequate, they were used for predicting new oper-
ating windows. Using a dataset obtained with a new level of 
setting, such as G3, the fitted models under M2 would have the 
same coefficients as those with other setting levels except 
the intercepts. Unlike in many machine learning applications 
where new predictions are generally produced by trained 
models using training datasets, the trained models using 
G1 and G2 contain undetermined parameters, the intercepts 
of η0 and η2, when the prediction is made on a new setting. 
Conducting a new experiment and collecting a new set of 
data are required to estimate the intercepts to reflect the 
changes in operating conditions. This procedure is referred 
to as calibration. 

The new intercepts can be estimated using very few data 
points. It is, therefore, proposed to make observations at one 
particular line speed and various power input values. This 
was demonstrated through a calibration using those points 
of G3 with speed = 80, which are shown in Fig. 8A and called 
G3S80 data, as the calibrating data, pretending that G3S80 
data was collected alone for predicting the operating window. 
Note that this calibrating dataset contains much fewer data 
points than G1 or G2. The new intercepts were estimated by 
fitting model M2 using dataset G3S80. In the new fit of M2, 
the estimated coefficients are

⌃

(2)

(3)

⌃
⌃

⌃ ⌃ ⌃
⌃ ⌃

⌃⌃ ⌃ ⌃ ⌃

(4)

⌃⌃

⌃
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�̂�𝜂! = −221.509 + 5.229	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8.484	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 − 0.412	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 
�̂�𝜂" = 86.827 − 5.857	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 24.780	𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 + 0.256	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 

 

The intercepts derived are -222.509, -224.005, and 
-221.509 for η0, and 80.256, 96.392, and 86.827 for η2, using 
G1, G2, and G3S80, respectively. The difference in intercepts 
reflects the difference in the locations of the operating win-
dows. When fitting models for the intercepts using G3S80, the 
same shape-related coefficients as in Equations 2 and 3 were 
used, assuming that the boundary shapes did not change. The 
assumption that the shapes of the operating window’s bor-
ders remain the same for all settings, as observed in Equations 
2 and 3 when fitting using G1 and G2, was further verified by 
a trial using the entirety of dataset G3 for estimating all the 
coefficients of η0 and η2. The coefficients determined in this 
trial are extremely close to, although not exactly the same as, 
those in Equation 5. Therefore, the operating windows can 
be assumed to have the same shape, and only their location 
and width may vary with setting. 

Testing

Figure 8B plots the data points of G3 at speeds other than 
80 m/min, which are regarded as testing data, together 
with the predicted operating window of 50% normal welds 
developed using dataset G3S80, and it shows a good match 
between the predicted operating window and experimental 

observations. At every speed, the splits between cold- 
normal welds or normal-overheat welds almost always fell in 
the 95% confidence intervals of the boundaries. Therefore, 
the accuracy of the predicted operating window of G3 was 
validated and confirmed by the testing data. However, the 
boundaries in Fig. 8B do not perfectly split the testing data 
as observed in Figs. 6 and 7 for training datasets G1 and G2. 
The reason is that the testing dataset G3 was not used in 
developing the boundaries in Fig. 8B; it was only used for a 
real-world check. An operating window of 90% normal welds 
was also produced using the same model, plotted in Fig. 9, 
with more accurate fitting to the testing data yet a narrower 
width compared to that shown in Fig. 8. The results in Figs. 
8 and 9 demonstrate that the predicted operating window, 
or the whole procedure including training and calibrating, is 
useful and accurate in real-world applications. 

The fact that the shapes of the boundaries of an operating 
window remain unchanged indicated that the underlining 
physical processes during welding (i.e., heating, melting, and 
solidification) did not change. Other factors, such as reload-
ing aluminum stock and induction coil adjustment that are 
highly unpredictable/uncontrollable, have a more significant 
impact on the welding schedule as they affect the width and 
location of the operating windows. The operating windows 
are generally fairly narrow, and those of high accuracy, e.g., 
90% normal welds, are narrower than those of lower accuracy. 
The narrow operating windows indicate high sensitivity of 
the welding process to power input. The drastically different 
locations and sizes of the operating windows seen in the 

(5)

⌃

Fig. 8 — A — Predicted operating window derived using calibration data at speed = 80; B — a graphical 
comparison of the predicted operating window with the testing data. The probabilities of getting normal welds 
are 0.50.
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figures are clear evidence that this process should not be 
treated as a black box, and it is impossible to make reliable 
predictions without conducting new calibration tests. 

Conclusions
In this research, machine learning was applied to predict 

viable operating windows for HF induction welding of alu-
minum tubes for radiators. Rapid yet accurate prediction of 
operating windows can be made through training and testing. 
The main findings are as follows:

1) In addition to the welding parameters, line speed, and 
power input, induction welding of aluminum tubes is also 
heavily affected by other factors, such as material and equip-
ment maintenance. However, statistical analysis has shown 
that no significant interactions exist between these factors 
and welding parameters.

2) For induction welding of aluminum tubes, training data is 
helpful, as reflected in the unchanged shapes of the operating 
window borders produced through training. But a universal 

operating window is not attainable, no matter how large the 
training dataset. Prediction can only be made through training 
the models of general form using data generated in the new 
production environment.

3) As the boundaries in an operating window do not change 
shape when the production conditions change, predictions 
of new operating windows can be made by conducting a 
limited number of new tests for determining the locations 
of the boundaries. 

4) Operating windows are the prediction results made 
through machine learning in this investigation, instead of 
individual points (welding schedules), as in many industrial 
applications of machine learning. This not only provides more 
choices for welding practitioners; it is also possible to gain a 
better understanding of the underlining physical processes 
through such analysis. This practice may expand the scope 
of machine learning applications.

5) Narrow operating windows indicate high sensitivity of 
the induction welding process to energy input, and extreme 

Fig. 9 — A — Predicted operating window derived using calibration data at speed = 80; B — a graphical 
comparison of the predicted operating window with the testing data. The probabilities of getting normal welds 
are 0.90.
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caution should be taken when choosing welding parameters 
to avoid inferior welds.

This research addressed a distinct set of challenges that 
cannot be forecasted merely through model training; it 
necessitates conducting fresh experiments for accurate 
predictions. The methodology adopted in this research can 
be applied to other manufacturing processes that although 
governed by fundamental engineering principles, a seemingly 
minor but uncontrollable change may produce drastically 
different output. Past data alone, used as training data in 
machine learning, are helpful but may not produce valid pre-
dictions for certain processes, such as the one in this study.
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