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Application of Machine Learning to Regression 
Analysis of a Large SMA Weld Metal Database

A cluster analysis of a coalesced Fe-C-Mn high-strength steel dataset revealed 
that the ultimate tensile strength of weld metal can be related to austenite-to-
ferrite transformation temperature in at least four ways

BY R. VARADARAJAN AND K. SAMPATH

Abstract

A machine learning approach was used to 
perform a regression analysis of Evans’s shielded 
metal arc (SMA) weld metal (WM) database 
involving several groups of Fe-C-Mn high-strength 
steels. The objective of this investigation was to 
develop an expression for austenite-to-ferrite (Ar3) 
transformation temperature that also included the 
effects of principal and minor alloy elements (in 
wt-%) and weld cooling rate (in °C/s) and relate this 
expression with WM ultimate tensile strength (UTS). 
The Ar3 data from 257 records obtained from several 
selected sources were combined with Ar3 projections 
at extreme end points in Evans’s WM database.

Subsequently, a cluster analysis was performed. 
The data in Evans’s database was filtered with 
the carbon equivalent number limited to 0.3 
maximum, carbon content limited to 0.1 wt-% 
maximum, nitrogen content limited to 99 ppm 
(0.0099 wt-%) maximum, preassigned Ar3 values 
limited to 680°C minimum, and WM UTS limited 
to 710 MPa maximum. The results provided a 
good approximation to the expression for Ar3 
transformation temperature in terms of elemental 
compositions and cooling rate. This allowed the Ar3 
to correlate with WM UTS of Fe-C-Mn in at least four 
ways depending on the sign of correlation of the 
data clusters.

The elemental combinations in the cluster with 
the highest negative correlation revealed highly 
predictable WM UTS. In particular, the new Ar3 

expression helped to predict decreases observed in 
certain Ar3 experimental data on WMs with balanced 
Ti, B, Al, N, and O additions reported among 13 
records with additional dilatometry results.

This correlation between the new expression 
for the Ar3 temperature and UTS of Fe-C-Mn WM 
is expected to complement the Japan Welding 
Engineering Society artificial neural network model 
currently available to predict Charpy V-notch test 
temperature for 28 J absorbed energy based on WM 
chemical composition. It will thereby provide a pair 
of effective tools for efficient development and/or 
evaluation of high-performance welding electrodes 
based on an Fe-C-Mn system for demand-critical 
applications.
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Introduction
In May 2017, Dr. Glyn M. Evans (formerly with Oerlikon, 

Switzerland) posted a large shielded metal arc (SMA) weld 
metal (WM) database on ResearchGate (Ref. 1). This data-
base contains more than 900 WM compositions based on an 
Fe-C-Mn system. These WM compositions belong to 74 types 
or groups of Fe-C-Mn alloy systems and were derived from 
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the book Metallurgy of Basic Weld Metal by G. M. Evans and 
N. Bailey (Ref. 2). Each WM composition includes individual 
ranges of 16 (C, Si, Mn, P, S, Cu, Ni, Cr, Mo, Nb (Cb), V, Ti, B, Al, N, 
and O) alloy element additions to Fe, along with the respective 
values for six WM properties that include yield strength (YS), 
ultimate tensile strength (UTS), reduction of area (%RA), elon-
gation (%El), and the test temperature required to achieve 
100 J (T100J/°C) and 28 J (T28J/°C) absorbed energy during 
Charpy V-notch (CVN) impact testing.

A recent research effort (Ref. 3) utilized a constraints-based 
model (CBM) as a simple and effective framework for orga-
nizing and analyzing the Fe-C-Mn SMA WM database (see  
aws.org/2021.100.036-database) to gain valuable insights. 
The CBM was built on the metallurgical principle that lower-
ing relevant solid-state phase transformation (i.e., austenite 
decomposition) temperatures is beneficial in improving WM 
strength and fracture toughness while simultaneously reduc-
ing carbon content. The carbon equivalent number (CEN) 
developed by Yurioka et al. (Ref. 4) was also beneficial in 
improving the weldability of high-strength steels.

Figure 1 (Refs. 5, 6) illustrates the relationship between 
the transformation temperature and UTS of ferritic-pearlitic, 
bainitic, and martensitic steels. The UTS of the ferritic- 
pearlitic steels appeared to range between 400 and 550 
MPa, while the corresponding transformation temperature 
appeared to range between 650° and 900°C. Interestingly, 
these ranges allow one to limit data selection when perform-
ing regression analysis of a large database such as Evans’s 
SMA WM database.

To gain valuable insights into Evans’s database, the CBM 
used various statistical (regression) equations and obtained 
several calculated metallurgical characteristics (CMCs). The 
CMCs related the chemical composition of high-strength 
steel WM through Yurioka et al.’s CEN and selected solid-state 
phase transformation-start (TS) temperatures, such as Ouchi 
et al.’s ferrite-start (Ar3) temperature (Ref. 7) and Steven and 

Haynes’s bainite-start (Bs) and martensite-start (Ms) tem-
peratures (Ref. 8), through respective constitutive equations. 
The individual CMCs allowed classification and/or ranking 
of the WMs in the database.

The CEN regression equation developed by Yurioka et al. 
(Ref. 4) is commonly used to evaluate the hydrogen cracking 
sensitivity of various types of modern structural, pipeline, 
and pressure vessel steels:

 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶 + {𝐴𝐴(𝐶𝐶) × 𝐶𝐶𝐸𝐸𝐸𝐸} 

where A(C) refers to the accommodation factor that is a 
function of C content, while EMU refers to a set of elemental 
multiplication units involving Si, Mn, Cu, Ni, Cr, Mo, V, Nb 
(Cb), and B.

𝐴𝐴(𝐶𝐶) = 0.75 + 0.25	𝑡𝑡𝑡𝑡𝑡𝑡ℎ	[20 × (𝐶𝐶 − 0.12)] 

𝐸𝐸𝐸𝐸𝐸𝐸 = {𝑆𝑆𝑆𝑆/24 +𝐸𝐸𝑀𝑀/6 + 𝐶𝐶𝐶𝐶/15 + 𝑁𝑁𝑆𝑆/20 + (𝐶𝐶𝐶𝐶 + 
𝐸𝐸𝑀𝑀 + 𝑉𝑉 +𝑁𝑁𝑁𝑁)/5 + 5 × 𝐵𝐵} 

 
 
 
 
 
 
 
 

Yurioka et al.’s aforementioned equation includes microal-
loy additions such as V, Nb, and B in addition to various 
principal alloy elements such as C, Mn, Cr, Ni, Mo, and Cu.

Equations 4–6 indicate that all principal alloy elements 
decrease austenite decomposition temperatures with C 
affecting to a maximum extent, particularly when C content 
exceeds 0.12 wt-%. These equations were developed several 
decades ago and can be used to calculate or estimate the 
transformation temperatures when the cooling rate suppos-
edly remains constant.

𝐴𝐴!"	(°𝐶𝐶) = 910 − 310(𝐶𝐶) − 80(𝑀𝑀𝑀𝑀) − 20(𝐶𝐶𝐶𝐶) − 
55(𝑁𝑁𝑁𝑁) − 15(𝐶𝐶𝐶𝐶) − 80(𝑀𝑀𝑀𝑀) 

 
 
  

𝐵𝐵!	(°𝐶𝐶) = 830 − 270(𝐶𝐶) − 90(𝑀𝑀𝑀𝑀) − 37(𝑁𝑁𝑁𝑁) − 
70(𝐶𝐶𝐶𝐶) − 83(𝑀𝑀𝑀𝑀) 

𝑀𝑀!	(°𝐶𝐶) = 561 − 474(𝐶𝐶) − 33(𝑀𝑀𝑀𝑀) − 17(𝑁𝑁𝑁𝑁) − 
17(𝐶𝐶𝐶𝐶) − 21(𝑀𝑀𝑀𝑀) 

The classification and/or ranking of all WMs in Evans’s data-
base using various CMCs obtained using the CBM approach 
(Ref. 3) reaffirmed that controlling the C content, CEN value, 
and calculated solid-state phase transformation tempera-
tures, particularly the difference between the calculated BS 
and calculated MS temperatures, is critical to developing and 
identifying high-performance, high-strength steel welding 
electrodes. A dual approach that manipulated the contents 
of principal alloy elements, such as C, Mn, Cu, Ni, Cr, and Mo, 
based on Equations 4–6 and added balanced amounts of 
Ti, B, Al, N, and O appeared to offer the best means to lower 

(1)

(2)

Fig. 1 — Relationship between UTS (in MPa) and 
transformation temperature (in °C) of ferrite-
pearlite, bainitic, and martensitic steels (Refs. 5, 6).

(3)

(4)

(5)

(6)
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relevant solid-state TS temperatures to produce WMs with 
high strength and exceptional fracture toughness.

A part of Evans’s large SMA WM database used an inde-
pendent scheme to build a total of 24 SMA welds, based on 
a TiBAlN series. These 24 welds included three subsets of 
eight welds, each at three levels of nitrogen content: normal 
(below 85 ppm or 0.0085 wt-%), intermediate (120 to 164 
ppm or 0.012 to 0.0164 wt-%), and high (217 to 249 ppm or 
0.0217 to 0.0249 wt-%). The primary intent of these three 
subsets of WMs was to identify and correlate the effects of 
Ti-B-Al-N-O microalloy additions on WM tensile strength, 
CVN impact toughness, and microstructure development 
in the fusion zone and reheated WM.

Table 1 shows the chemical composition of 13 of 24 TiBAlN 
series of SMA WMs. The C content of these 13 WMs varied 
between 0.066  and 0.078 wt-%, while the Mn content varied 
between 1.4  and 1.66 wt-%. The Si content varied between 
0.25 and 0.63 wt-%. Other principal alloy elements remained 
constant: Cr content at 0.03 wt-%, Ni content at 0.03 wt-%, 
Mo content at 0.005 wt-%, and Cu content at 0.03 wt-%. 
Microalloy additions V and Nb were held constant at 0.0005 
wt-%. Compared to the aforementioned principal alloy ele-
ments and V and Nb microalloy additions, the Ti content 
varied between 0.0001 and 0.054 wt-%, B content ranged 
between 0.0001 and 0.0167 wt-%, Al content varied between 
0.0001 and 0.058 wt-%, N content varied between 0.0041 
and 0.0249 wt-%, and O content varied between 0.0282 
and 0.0475 wt-%.

Following weld mechanical testing that included all-weld 
metal tensile testing at ambient temperature and CVN impact 
testing over a wider temperature range from –120° to + 40°C, 
these 13 WMs were subjected to dilatometric evaluation (Refs. 
9–11). These 13 WMs were selected to allow dilatometric 
evaluation of specific alloy additions relative to a range of 
Ti, B, Al, N, and O contents, particularly the effect of N con-
tent at three levels on both TS and transformation-finish (TF) 
temperatures.

The dilatometric evaluation studied the austenite-to-ferrite 
transformation during continuous cooling. Test specimens 
were machined to form hollow cylinders with the following 
dimensions: 10 mm long by 5 mm O.D. with 1 mm wall thick-
ness. The axis of the test specimen was maintained parallel to 
the original welding direction. The specimens were subjected 
to the following controlled thermal cycle: austenitization at 
1250°C for 2 min, followed by continuous cooling at a typi-
cal (weld) cooling rate of 13°C/s from 800° to 500°C (also 
known as Δt8/5; 13°C/s corresponds to about 23 s to cool 
from 800° to 500°C).

The study determined the TS, 50% transformation (T50), 
peak rate transformation (TPRTT), and TF temperatures of the 
13 (O, O2, X, X2, Y, Y2, Z, Z2, U, U2, V, V1, and V2) WMs. Table 
2 shows the numerical values for the various transformation 
temperatures besides (TS–TF) values, along with UTS and CVN 
test temperatures for 100 and 28 J absorbed energy of the 
13 WMs (Refs. 9–11).

The results found that weld V had the lowest TS temperature 
at 680°C and correspondingly the highest UTS at 732 MPa. 
A progressive increase in TS temperature occurred for welds 
U, Y2, Z2, Y, Z, O2, V2, X, X2, V1, O, and U2. Correspondingly, a 
progressive decrease in UTS from 644 to 528 MPa occurred 

in welds V1, Z, X2, O2, Y2, Y, V2, U, Z2, X, U2, and O. When 
WM N content was below 80 ppm (0.008 wt-%), the overall 
trend between TS temperature and UTS among all six WMs 
was found to be highly correlated, as shown in Fig. 2. Two 
of these six welds, welds Z (with 640 MPa UTS) and Y (with 
594 MPa UTS), appeared closer and on either side of the 
trend line, indicating that their Ti, B, Al, N, and O additions 
were well or adequately balanced. The trendline equation 
showed the following:

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊	𝑀𝑀𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊	𝑈𝑈𝑈𝑈𝑈𝑈	(𝑖𝑖𝑖𝑖	𝑀𝑀𝑀𝑀𝑀𝑀) = 1814 − 
(1.6722 × 𝑈𝑈!	𝑖𝑖𝑖𝑖	°𝐶𝐶), 𝑤𝑤𝑖𝑖𝑀𝑀ℎ	𝑅𝑅" = 0.6368 

  
thereby clearly confirming the metallurgical principle that 
lowering the transformation temperature aided to increase 
WM UTS. The trendline also indicated that a TS temperature 
greater than 680°C achieved a WM UTS less than 700 MPa 
(100 ksi).

A recent review (Ref. 12) of the dilatometric results 
of the 13 Fe-C-Mn high-strength steel SMA WMs (see  
aws.org/2022.101.010-database) revealed that balanced 
Ti, B, Al, N, and O additions in welds Z and Y reduced the 
TS temperature. For example, weld Z containing microal-
loy additions as listed in Table 1 showed a total Ti, B, Al, 
N, and O content at 0.1133 wt-% that appeared to ensure 
effective deoxidation, formed complex inclusions, and 
distributed inclusions to enable development of highly fracture- 
resistant refined WM microstructures. Depending on nom-
inal WM chemical composition and actual effects during 
welding, these Ti, B, Al, N, O additions further lowered the 
actual TS temperatures, thereby promoting a cloudburst of  
austenite-to-ferrite phase transformation over a narrow 
(TS–TF) temperature range. It may be wiser to avoid the rich 
and lean ends for these microalloy additions, except N, which 
should be held at the lean end, preferably much below 80 
ppm (0.008 wt-%).

As shown in Table 2, at a N content below 0.01 wt-%, the 
total Ti, B, Al, N, O additions were at 0.0833 wt-% in weld Y 
and 0.1133 wt-% in weld Z. These two welds offered nearly 
a 100°C shift in lowering CVN test temperature for either 
28 or 100 J absorbed energy. Dilatometric evaluations of 
reheated WMs showed the following: 1) The balanced total 

(7)

Fig. 2 — Effect of TS temperature on WM tensile 
strength.
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Table 1 — Chemical Composition of 13 TiBAlN Series Weld Metals (Ref. 1)

Weld
ID

C
(wt-%)

Si
(wt-%)

Mn
(wt-%)

P
(wt-%)

S
(wt-%)

Cu
(wt-%)

Ni
(wt-%)

Cr
(wt-%)

O 0.074 0.25 1.4 0.007 0.008 0.03 0.03 0.03

02 0.073 0.27 1.66 0.008 0.009 0.03 0.03 0.03

X 0.069 0.45 1.47 0.006 0.005 0.03 0.03 0.03

X2 0.068 0.47 1.46 0.006 0.007 0.03 0.03 0.03

Y 0.07 0.45 1.57 0.01 0.006 0.03 0.03 0.03

Y2 0.069 0.36 1.51 0.008 0.007 0.03 0.03 0.03

Z 0.072 0.49 1.56 0.01 0.007 0.03 0.03 0.03

Z2 0.068 0.5 1.45 0.011 0.006 0.03 0.03 0.03

U 0.073 0.4 1.52 0.011 0.006 0.03 0.03 0.03

U2 0.066 0.36 1.4 0.012 0.007 0.03 0.03 0.03

V 0.078 0.6 1.44 0.007 0.006 0.03 0.03 0.03

V1 0.067 0.63 1.44 0.01 0.005 0.03 0.03 0.03

V2 0.069 0.6 1.42 0.012 0.006 0.03 0.03 0.03

Low 0.066 0.25 1.4 0.006 0.005 0.03 0.03 0.03

High 0.078 0.63 1.66 0.012 0.009 0.03 0.03 0.03

Range 0.012 0.38 0.26 0.006 0.004 0 0 0
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Table 1 — (continued)

Mo
(wt-%)

Nb
(wt-%)

V
(wt-%)

Ti
(wt-%)

B
(wt-%)

Al
(wt-%)

N
(wt-%)

O
(wt-%)

0.005 0.0005 0.0005 0.0001 0.0001 0.0006 0.0079 0.0475

0.005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0235 0.0399

0.005 0.0005 0.0005 0.041 0.0002 0.0001 0.0077 0.0282

0.005 0.0005 0.0005 0.045 0.0002 0.0005 0.0249 0.0297

0.005 0.0005 0.0005 0.039 0.0039 0.0013 0.0083 0.0308

0.005 0.0005 0.0005 0.041 0.0044 0.0005 0.0232 0.0292

0.005 0.0005 0.0005 0.042 0.0048 0.016 0.0067 0.0438

0.005 0.0005 0.0005 0.047 0.0045 0.018 0.023 0.044

0.005 0.0005 0.0005 0.039 0.0158 0.0005 0.0084 0.029

0.005 0.0005 0.0005 0.039 0.0167 0.0005 0.0217 0.0297

0.005 0.0005 0.0005 0.054 0.0056 0.058 0.0041 0.044

0.005 0.0005 0.0005 0.048 0.0044 0.056 0.012 0.0473

0.005 0.0005 0.0005 0.043 0.0035 0.056 0.0235 0.047

0.005 0.0005 0.0005 0.0001 0.0001 0.0001 0.0041 0.0282

0.005 0.0005 0.0005 0.054 0.0167 0.058 0.0249 0.0475

0 0 0 0.0539 0.0166 0.0579 0.0208 0.0193
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Ti, B, Al, N, O additions lowered the actual TS temperature 
by about 60°C compared to the calculated Ar3 transforma-
tion temperature obtained from Ouchi et al.’s constitutional 
relationship (Equation 4); 2) N more than 100 ppm (0.010 
wt-%) effectively nullified the beneficial effects of Ti, B, and 
Al additions in lowering the transformation temperature; and 
3) at N content much below 80 ppm (0.008 wt-%), both a 
lower TS temperature and a narrow start-to-finish (TS–TF) 
temperature range helped in achieving exceptional WM CVN 
impact toughness.

The Japan Welding Engineering Society (JWES) offers 
a website (www-it.jwes.or.jp/weld_simulator/en/cal6.jsp) 
wherein one can calculate and predict the temperature for 
28 J CVN impact toughness or absorbed energy of Fe-C-Mn 
WMs based on their chemical composition with certain min-
imum and maximum limits for all 16 (C, Si, Mn, P, S, Cu, Ni, 
Cr, Mo, Nb (Cb), V, Ti, B, Al, N, and O) alloy additions to Fe.  
The prediction is performed using artificial neural network 
(ANN) analysis by a software developed by D. J. C. MacKay 
at the University of Cambridge. The prediction is possible 
within the minimum and maximum limits set for the 16 alloy 
elements and uses Evans’s SMA WM database on low-alloy, 
high-strength steel WM as a basis.

Evans’s database (Refs. 1, 2) has been made available to 
the University of Cambridge (phase-trans.msm.cam.ac.uk/
map/data/materials/). The database contains properties of 
all-weld metals obtained under the constant welding condi-
tions of 1 kJ/mm arc energy and 200°C interpass temperature 
on 20-mm-thick plates. The ANN prediction gives maximum, 
minimum, and average values of transition temperature for 
28 J CVN impact toughness or absorbed energy along with 
the degree of prediction error. When the difference between 
the maximum and minimum predicted values is more than 
30°C, the prediction is considered unreliable.

Figure 3 shows the predicted temperature for 28 J 
absorbed energy for welds Z (left) and Y (right). Table 3 
shows a comparison of the actual test values and predicted 
results of CVN temperature for 28 J absorbed energy for all 
the 13 original welds. The predicted values for the 13 original 
welds were quite consistent with actual test results in both 
values and trend, and the error values associated with pre-
dictions were much less than 30°C for each of these welds. 
Furthermore, when the Ti, B, Al, N, and O contents of all 12 
WMs were modified to the same values as in weld Z, the pre-
dicted temperature for 28 J absorbed energy for the welds 
decreased (Table 3) in all cases except weld Y with a total 
(Ti+B+Al+N+O) content at 0.0833 wt-% and weld V1 with 
a total (Ti+B+Al+N+O) content at 0.1677 wt-%.

These findings clearly demonstrated that the UTS of 
Fe-C-Mn ferritic WMs increased with the decreasing TS, and a 
superior WM CVN toughness could be achieved by balancing 
Ti, B, Al, N, and O additions.

As shown in Table 2, the balancing of Ti, B, Al, and O addi-
tions may be related to TS, with a decreasing TS requiring a 
lower amount of Ti, B, Al, and O additions. As revealed by 
weld V, when TS is at its low end, excessive amounts of Ti, B, 
Al, and O additions likely raised the CVN test temperature 
for 28 J absorbed energy, indicating the possibility to form 
numerous inclusions, which resulted in a so-called dirty weld. 
By contrast, as revealed by weld O, when TS is at its high end, 
disproportionate amounts of Ti, B, Al, and O additions likely 
raised the CVN test temperature for 28 J absorbed energy, 
indicating the possibility of free oxygen in solution.

Interestingly, the JWES ANN template allows one to identify 
balanced Ti, B, Al, N, and O contents of WMs by manipulating 
their contents within the specified ranges mentioned in the 
JWES ANN template and achieve a CVN test temperature 
for 28 J absorbed energy colder than –60°C while ensuring 

Fig. 3 — The JWES neural network–predicted temperature for 28 J absorbed energy. Weld Z is on the left, and 
weld Y is on the right.
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that the error values associated with predictions were much 
less than 30°C for each of these welds. In other words, one 
could use the –60°C CVN test temperature for 28 J absorbed 
energy as a benchmark to distinguish welds with balanced 
Ti, B, Al, N, and O contents.

While the JWES ANN template is available to predict CVN 
test temperature for 28 J absorbed energy based on WM 
chemical composition, a complementary relationship or ANN 
template involving WM UTS and WM chemical composition 
is currently unavailable.

Modeling of WMs
In recent years, there has been a growing interest to 

develop computer-based models on WM mechanical proper-
ties, particularly WM tensile and impact or fracture toughness 
properties based on WM chemical composition. For the most 
part, these modeling activities primarily involved ANNs, which 
are emerging as powerful tools with the capacity to recon-
struct a database on weld properties through data selection 
and augmentation.

These modeling activities implicitly recognize that sup-
pressing austenite decomposition or lowering solid-state 
phase transformation temperatures induces greater 
nucleation rates and refines the resultant microstructural 
constituents (Ref. 13), thereby enhancing weld mechanical 
properties. However, there had been no explicit modeling 
efforts to correlate WM tensile and CVN impact toughness 

or fracture appearance transition temperature (FATT) with 
WM chemical composition through austenite (decompo-
sition) transformation temperatures. Availability of such 
a correlation or relationship between WM UTS and WM 
chemical composition could complement the JWES ANN 
currently available to predict CVN test temperature for 28 J 
absorbed energy based on WM chemical composition, thus 
providing a pair of effective tools for efficient development 

Fig. 4 — Trellis plot of element amounts (in wt-%) against WM UTS in Evans’s dataset.

Fig. 5 — The regression fit of UTS against the values 
reported in Evans’s database.
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Table 2 — Test Results of Transformation Temperature of 13 TiBAlN Weld Metals at 13°C/s Cooling Rate 
(Refs. 9–11)

Weld 
ID

Ti
(wt-%)

B
(wt-%)

Al
(wt-%)

N
(wt-%)

O
(wt-%)

O  0.0001 0.0001 0.0006 0.0079 0.0475

O2 0.0005 0.0005 0.0005 0.0235 0.0399

X 0.041 0.0002 0.0001 0.0077 0.0282

X2 0.045 0.0002 0.0005 0.0249 0.0297

Y 0.039 0.0039 0.0013 0.0083 0.0308

Y2 0.041 0.0044 0.0005 0.0232 0.0292

Z 0.042 0.0048 0.016 0.0067 0.0438

Z2 0.047 0.0045 0.018 0.023 0.044

U 0.039 0.0158 0.0005 0.0084 0.029

U2 0.039 0.0167 0.0005 0.0217 0.0297

V 0.054 0.0056 0.058 0.0041 0.044

V1* 0.048 0.0044 0.056 0.012 0.0473

V2 0.043 0.0035 0.056 0.0235 0.047

Low 0.0001 0.0001 0.0001 0.0041 0.0282

High 0.054 0.0167 0.058 0.0249 0.0475

Range 0.0539 0.0166 0.0579 0.0208 0.0193

*The transformation temperature for weld V1 was obtained from interpolation of graphical data reported in Ref. 11.
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Table 2 — (continued)

(Ti + B + Al + N + O)
(wt-%)

UTS
(MPa)

CVN Test Temperature 
(°C) Transformation Temperature (°C)

@ 100 J @ 28 J TS T50 TPRTT TF (TS–TF)

0.0562 528 –14 –42 762 658 650 554 208

0.0649 607 20 –16 754 630 606 534 220

0.0772 577 –61 –77 760 660 630 568 192

0.1003 631 –30 –58 760 650 638 572 188

0.0833 594 –82 –98 710 625 618 560 150

0.0983 605 –24 –56 703 612 606 510 193

0.1133 640 –83 –100 710 645 642 550 160

0.1365 583 13 –18 703 635 632 560 143

0.0927 586 –53 –80 700 626 620 531 169

0.1076 541 –52 –81 765 662 650 574 191

0.1657 732 –12 –46 680 598 596 507 173

0.1677 644 –64 –93 760 680 640 555 205

0.173 591 –45 –70 754 644 642 588 166

0.0562 528 –83 –100 680 598 596 507 143

0.173 732 20 –16 765 680 650 588 220

0.1168 204 103 84 85 82 54 81 77
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of welding electrodes based on an Fe-C-Mn system for high- 
performance applications.

Fujii and Ichikawa (Ref. 14) developed an ANN that could 
predict weld properties, including WM strength, FATT, and 
hardness. In addition, as one of the characteristics of their 
prediction, they identified that unreliability in estimated 
values can be displayed by the magnitude of the error bar. 
According to this system, the magnitude of the error bar 
was dependent on input conditions (test conditions) at the 
time; for example, where the data dispersion was large and 
reliability was low, the error bar was displayed as large and 
the computer itself was equipped with a function that could 
display the reliability of its prediction. The prediction of this 
error bar substantially extended the application scope of 

conventional neural networks and allowed the possibility of 
their application to the reconstruction of databases related 
to various properties.

The University of Cambridge performed an ANN analysis 
of a vast and fairly general database assembled from publi-
cations on WM properties involving YS, UTS, elongation, and 
CVN impact toughness of ferritic steel WMs expressed as 
functions of chemical composition, heat input during welding, 
and postweld heat treatment (Refs. 15–18). This effort also 
used Evans’s SMA WM database on Fe-C-Mn WMs (Refs. 
1–2). The outputs of the model were assessed in a variety of 
ways, including specific studies of model predictions for the 
Fe-C-Mn and Fe-2.25Cr-1Mo systems. Comparisons were 
also made with corresponding methods that used simple 

Fig. 6 — A regression of coalesced Ar3 values (Salganik et al., Trzaska, and Ouchi et al.) against WM UTS.

Fig. 7 — A plot of new Ar3 values against WM UTS.

40-s | WELDING JOURNAL



physical metallurgical principles. The models appeared to 
capture vital metallurgical trends and emulate expectations 
from current physical metallurgy principles yet required much 
more systematic experimental data to improve the accuracy 
of their predictions.

The U.S. Navy used an ANN technique developed by MacKay 
with a Bayesian framework wherein the probability of occur-
rence is interpreted as a reasonable expectation of a state of 
current knowledge but allows estimation of error bars like the 
ones introduced by Fujii and Ichikawa (Ref. 14). It also warns 
the user when data is sparse or locally noisy. This ANN was 

trained and tested on a set of data obtained from WMs of 
various steel types used for shipbuilding (Ref. 19). The input 
variables for the network used WM chemical composition 
and weld cooling rate. The output consisted of YS and UTS, 
elongation, and reduction of area. This effort created many 
models using different network configurations and initial 
conditions. The method revealed significant trends describ-
ing the dependence of WM mechanical properties on WM 
chemical composition and cooling rate.

The U.S. Navy also used a similar ANN approach to model 
WM toughness characterized by CVN and dynamic tear tests 

Table 3 — Predicted CVN Test Temperature of 13 TiBAlN Series Weld Metals with Balanced TiBAlNO 
Additions

Weld ID
Measured CVN Test

Temperature (°C)
@ 28 J

CVN Predicted Test Temperature (°C) @ 28 J

Original Weld Balanced Weld

0 –42 –49 –82

O2 –16 –15 –88

X –77 –80 –90

X2 –58 –59 –89

Y –98 –102 –94

Y2 –56 –54 –89

Z –100 –94 —

Z2 –18 –28 –89

U –80 –79 –92

U2 –81 –78 –84

V –46 –47 –95

V1 –93 –93 –90

V2 –70 –71 –90
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of the same types of steels used for shipbuilding (Refs. 20, 
21). The level of noise in the experimental data was perceived 
to be high, but it nevertheless allowed one to recognize rea-
sonable trends and uncertainties when making predictions. 
For example, the WM toughness showed a nonlinear deteri-
oration as the WM oxygen concentration increased, yet this 
behavior could be assessed quantitatively.

Recently, Kim et al. (Ref. 22) performed an ANN analysis 
of Evans’s SMA WM database and investigated the effect of 
WM chemical composition on WM mechanical properties, 
including YS and UTS, and test temperature on CVN impact 
toughness testing to provide 100 J absorbed energy. Based 
on the data collected from previously performed experi-
ments, Kim et al. developed correlations between related 
variables, analyzed the results, and offered predictive models. 
They prepared sufficient datasets using data augmentation 
techniques to overcome problems caused by insufficient 
data and enable better predictions. Finally, they developed 
closed-form equations based on the predictive models to 
evaluate WM mechanical properties according to WM chem-
ical composition. Each ANN model developed in this study 
considered changes in the content of only two elements.  
The study is mainly useful to predict the relative increase 
or decrease according to the change in the content of any 
two elements.

A recent research effort by Xiong et al. (Ref. 23) applied 
machine learning to predict mechanical properties of steels.  
The investigators selected 360 data on four mechanical prop-
erties (fatigue strength, tensile strength, fracture strength, 
and hardness) of both carbon steels and low-alloy steels from 
the National Institute for Materials Science (NIMS) database. 
They applied five machine learning algorithms on the 360 
datasets to predict mechanical properties and determined 
that random forest regression provided the best correla-
tion among the four most important features (tempering 
temperature and alloying elements of C, Cr, and Mo) for the 
mechanical properties of steels. They also used symbolic 
regression to generate mathematical expressions that explic-

itly predicted how each of the four mechanical properties 
varied quantitatively with the four most important features.

Objectives
The objective of the current effort was to use machine 

learning (Refs. 24, 25) for the following:
1) Determine a new expression for Ar3 temperature appli-

cable to Evans’s SMA WM database that includes the effects 
of 16 principal and minor alloy elements (in wt-%) and weld 
cooling rate (in °C/s),

2) Use the new expression to develop a relationship with 
WM UTS, and

3) Perform a cluster analysis to gain additional insights.
It is well known that the austenite-to-ferrite (Ar3) trans-

formation temperature is a function of alloy additions, prior 
austenite grain size, cooling rate, and possibly prior thermome-
chanical processing history. However, Evans’s database didn’t 
have information on prior austenite grain size and weld cool-
ing rate. Only the 13 WMs (Refs. 9–11) that were subjected to 
dilatometry evaluation recorded the weld cooling rate. Conse-
quently, development of a new Ar3 expression based on Evans’s 
database is likely to have several limitations. However, as most 
material specifications and welding electrode specifications 
require the UTS to exceed a certain minimum value, one could 
still derive exceptional benefit from a new Ar3 expression that 
would be helpful in correlating Ar3 with WM UTS.

Procedure
A review of the metallurgical literature revealed numerous 

formulae on Ar3 expressions (Refs. 26–31). For example, Gorni 
(Ref. 32) in the Steel Forming and Heat-Treating Handbook 
documented a large collection of formulae that included 
regression equations for Ar3 temperatures of several types 
of steels. A few of these equations include various microalloy 
additions along with cooling rates or cooling times from 800° 
to 500°C, or Δt8/5. However, many times, the Ar3 formulae 
reported in the literature are applicable only over limited 
ranges of element compositions and other predictors such as 
grain size, strain rate, etc. In support of the current research 
effort, some Ar3 equations, including Ouchi et al.’s expression 
(Equation 4), seemed to be suitable starting points. Still, they 
are limited in chemical composition range and predictive 
capabilities because they do not include all the 16 alloying 
elements reported in Evans’s database.

In addition to Ouchi et al.’s Ar3 regression expression, two 
other Ar3 regression equations, mentioned below, were con-
sidered for use in the current research effort.

The equation by Salganik et al. is as follows (Ref. 26):

𝐴𝐴!"(°𝐶𝐶) = 735.6 + 180.1(𝐶𝐶 + 𝐶𝐶𝐶𝐶) + 1206.9(𝑆𝑆 + 𝑃𝑃) − 
10.9(𝑆𝑆𝑆𝑆 +𝑀𝑀𝑀𝑀 +𝑁𝑁𝑆𝑆 + 𝐶𝐶𝐶𝐶 +𝑀𝑀𝑀𝑀) + 755.3(𝐴𝐴𝐴𝐴 + 𝑁𝑁) − 

328.8(𝑉𝑉 + 𝑁𝑁𝑁𝑁 + 𝑇𝑇𝑆𝑆) 

The equation by Trzaska is as follows (Ref. 27):

(8)

Fig. 8 — A plot of UTS against new Ar3 values 
(Equation 17) in clusters with a strong negative 
correlation.
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𝐴𝐴!"(°𝐶𝐶) = 857 − 257(𝐶𝐶) + 23(𝑆𝑆𝑆𝑆) − 69(𝑀𝑀𝑀𝑀) 
+26(𝐶𝐶𝐶𝐶) − 38(𝑁𝑁𝑆𝑆) − 20(𝐶𝐶𝐶𝐶) − 20(𝑀𝑀𝑀𝑀) + 

34(𝑉𝑉) + 0.07(𝑇𝑇#) − 17𝐶𝐶𝐶𝐶$.&' 
 

 
where TA is the austenitizing temperature in °C, and the CR 
is the cooling rate in °C/min.

The sign of Si in Salganik et al.’s Ar3 expression seemed to 
interfere with the correct evolution of the regression coeffi-
cient for Si in the current work. It was set to +10.9, and the 
Ar3 expression by Salganik et al. was modified as follows:

𝐴𝐴!"(°𝐶𝐶) = 735.6 + 180.1(𝐶𝐶 + 𝐶𝐶𝐶𝐶) + 
1206.9(𝑆𝑆 + 𝑃𝑃) + 10.9𝑆𝑆𝑆𝑆 − 
10.9(𝑀𝑀𝑀𝑀 +𝑁𝑁𝑆𝑆 + 𝐶𝐶𝐶𝐶 +𝑀𝑀𝑜𝑜) + 

755.3(𝐴𝐴𝐴𝐴 + 𝑁𝑁) − 328.8(𝑉𝑉 + 𝑁𝑁𝑁𝑁 + 𝑇𝑇𝑆𝑆) 
	
	
	
	
	 	

Similarly, the Cu term in Trzaska’s Ar3 expression seemed 
to interfere with the correct evolution of the Cu coefficient 
sign in the current work. So, it was changed to –10(Cu), and 
Trzaska’s Ar3 expression was modified as follows.

𝐴𝐴!"(°𝐶𝐶) = 857 − 257(𝐶𝐶) + 23(𝑆𝑆𝑆𝑆) − 69(𝑀𝑀𝑀𝑀) − 
10(𝐶𝐶𝐶𝐶) − 38(𝑁𝑁𝑆𝑆) − 20(𝐶𝐶𝐶𝐶) − 20(𝑀𝑀𝑀𝑀) + 

34(𝑉𝑉) + 0.07(𝑇𝑇#) − 17𝐶𝐶𝐶𝐶$.&'	

The data ranges for the applicability of these equations are 
given in Gorni’s handbook (Ref. 32). Trzaska’s equation for 
Ar3 seemed to be applicable over almost the entire range of 
Evans’s database, although it did not include all the alloying 

elements. Salganik et al.’s expression for Ar3 was applica-
ble only to a limited number of records in Evans’s database 
because of the narrow data range of this expression, though it 
included several minor alloying elements. The above expres-
sions were used in this work as discussed below.

The initial data preparation involved an examination of 
Evans’s database and addition of columns to include various 
CMCs, including a CEN (Ref. 4) and selected austenite decom-
position temperatures, such as TS or Ar3 (Ref. 7) or Bs and Ms 
(Ref. 8), based on WM compositions using corresponding 
constitutive equations.

Following the aforementioned computation using Micro-
soft Excel, certain records that did not obey the relationship 
on the required ordering of these temperatures (i.e., Ar3 > 
Bs > Ms) were eliminated. Also, some records containing no 
information in some columns were excluded. This first phase 
filtering yielded 858 records. Then the records were limited 
to the high wt-% of elements indicated by Trzaska’s Ar3 data 
range. This filtering yielded 809 records. Then two indicators 
were set on the data to indicate if the records were in Salganik 
et al.’s data range or in Trzaska’s data range. Then Ar3 values 
from the modified Salganik et al. (Equation 10) and modified 
Trzaska (Equation 11) equations were added to the records 
as appropriate. A coalesced Ar3 column was also added to the 
data. Salganik et al.’s modified Ar3, Trzaska’s modified Ar3, and 
Ouchi et al.’s Ar3 (Equation 4) were coalesced in this order.

The above steps were taken to identify and select valuable 
records for regression analysis. These Ar3 values provided 
tentative values that appeared in certain records that were 
added as high-end guideposts to regression. Subsequently, 
the data was further restricted to certain WM compositions 
wherein the CEN was limited to 0.3 maximum, carbon content 
was limited to 0.1 wt-% maximum, and nitrogen content was 
limited to 99 ppm (0.0099 wt-%) maximum. Also, records 
with coalesced Ar3 values less than 680°C that appeared as 
strong outliers in an UTS vs. Ar3 regression were excluded. 

(9)

(10)

(11)

Fig. 9 — A plot of UTS against new Ar3 values (Equation 18) in clusters with a moderate negative correlation.
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Data records with UTS values greater than 710 MPa were 
excluded. All these data filters reduced the number of records 
to 595 out of more than 900 records in Evans’s database.

To study potential regression equations for Ar3, the 13 WM 
records in the TiBAlN series that had experimental Ar3 (i.e., 
TS) values (Refs. 9–11) were extracted and combined with Ar3 
predictions for 21 other records that were within the range of 
Salganik et al.’s (Ref. 26) modified regression equation and 
75 records found in the Mintz et al. dataset (Ref. 28). To make 
the new expression for Ar3 applicable over the entire range in 
Evans’s dataset, 23 records with highest wt-% of elements 
and fractions of the highest wt-% in Evans’s dataset were 
also added with Ar3 values predicted using the Ar3 coalesc-
ing logic described earlier. Then additional data on Ar3 and 
respective element compositions and cooling rates found 
in Refs. 29–43 were collected. These experimental data-
sets included a wide variety of low-alloy steel compositions 
and cooling rates and respective Ar3 values. Also, 20 sets of 
numerical records on various steels with random element 
composition values at low range were included to improve 
the regression intercept and accuracy. A composite dataset 
created in this manner was used to derive a new regression 
equation for Ar3, including the effects of major and minor 
alloy elements (in wt-%) and weld cooling rate (in °C/s). 
Appendix I (aws.org/2023.102.004.appendix) provides the 
experimental datasets extracted from selected sources and 
used in this investigation.

A standard machine learning approach implemented in 
R (Refs. 24, 25) using linear model (lm()) and model iden-
tification using regsubsets() was used in the investigation, 
and the final formula was hand tuned as well. A data frame 
of linear and nonlinear predictors with the experimental or 
coalesced temperatures was prepared, and the model was 
generated as follows:

model = lm(Ar3 ~., data = df) or 
model = regsubsets(Ar3 ~., data = df , method = ‘backward’) 

 

where df is the data frame. Several functions were invoked on 
the model output to print out various properties of the model. 

The function summary(mdl) is typically used to indicate 
the fit coefficients in the case of lm(), and the summary() 
function provides a high-level summary of various models 
generated when regsubsets() is used. Additional functions 
were invoked to probe the contents of the models further.

The output of regsubsets() contained various models 
tried, their R2, adjusted R2, Cp (a variant of Akaike informa-
tion criterion or AIC, developed by Colin Mallows), and BIC 
(Bayesian information criterion) values for all models. Cp, 
BIC, and adjusted R2 are the model metrics typically used 
to select an appropriate model.

Many linear and nonlinear predictors were provided to 
the models by adding respective columns in the data frame. 
In the beginning, many square and square root terms were 
added to the data frame for this purpose along with the main 
linear terms. Many models suggested by model identification 
were examined and modified. Usually, a model having the 
least Mallows’s Cp or BIC merits selection.

The current investigation also evaluated if the model was 
good in reproducing the decrease in Ar3 temperatures for a 
few selected experimental records with the balance Ti, B, 
Al, N, and O content (Refs. 9–11). As a result, a few models 
recommended by automated model selection having the 
lowest Mallows’s Cp were examined, and a manual selection 
was made based on a few required model properties — such 
as negative coefficients for primary alloying elements, a pos-
itive coefficient for Si, and a negative coefficient for cooling 
rate — and the model satisfactorily predicting the observed 
Ar3 decreases in the five experimental records related to the 
presence of balanced Ti, B, Al, N, and O content.

Overall, 257 data records on WM or low-alloy steels were 
combined in an R data frame to determine a new expres-
sion for Ar3. The rest of the analysis used 595 data records 
obtained after applying various filters to Evans’s database.

Results and Discussion
Various data properties and the results of correlations 

with the new regression formulae for the Ar3 temperature 
are described below.

Initially, the elemental levels in Evans’s database were 
plotted as shown in Fig. 4. These Trellis plots revealed that 
carbon content in the data was largely centered around 0.075 
wt-% while manganese content seemed to form two major 
clusters. Cr, N, Mo, Cu, Nb, Al, and B contents largely clustered 
close to 0 wt-% though much higher numbers were found 
in some data records. Si, Ti, N, O, S, and P contents seemed 
to form largely single clusters with few outliers. V content 
seemed to cluster largely around two values. These clusters 
and outliers would create similar clusters or spreads in depen-
dent variables such as UTS, YS, and CVN at 28 J. CVN test 
temperatures at 28 and 100 J vs. UTS showed wide scatter.

A formal analysis following data preparation allowed an 
assessment of the effect of certain predictors on WM UTS 
and Ar3 temperature.

Fig. 10 — A plot of UTS against new Ar3 values 
(Equation 19) in clusters with a strong positive 
correlation.
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UTS vs. Predictors

Initially, a regression of UTS using multiple linear terms 
was obtained as follows:

𝑈𝑈𝑈𝑈𝑈𝑈(𝑀𝑀𝑀𝑀𝑀𝑀) = 294 + 844(𝐶𝐶) + 112.8(𝑈𝑈𝑆𝑆) + 79.2(𝑀𝑀𝑀𝑀) + 
72.3(𝐶𝐶𝐶𝐶) + 32.4(𝑁𝑁𝑆𝑆) + 83.3(𝐶𝐶𝐶𝐶) + 151.5(𝑀𝑀𝑀𝑀) + 

1773.3(𝑁𝑁𝑁𝑁) + 995.1(𝑉𝑉) + 855.3(𝑈𝑈𝑆𝑆) + 
289(𝐴𝐴𝐴𝐴) + 3638.2(𝑁𝑁) 

Figure 5 shows the UTS fit given by Equation 12 plotted 
against reported WM UTS values in Evans’s database. It is 
interesting to note a near linear relationship with less scat-

ter in UTS between the 450 and 600 MPa range, which is 
consistent with the data on ferritic-pearlitic steels shown in 
Fig. 1. This UTS regression was performed over 595 records 
in Evans’s database obtained after applying several filtering 
conditions as described earlier.

Simple regression that included most of the elements 
except P and S showed an adjusted R2 of 0.9118. This is a 
pretty good fit despite a few key unknowns about the WM, 
such as (average) prior-austenite grain size and cooling rate. 
The p-values of all the coefficients were well less than 0.05. 
The coefficients of B, O, and S were not significant. The coef-

Table 4 — Minimum and Maximum Limits for Elemental Composition and Cooling Rate

Element Minimum (wt-%) Maximum (wt-%)

C 0.024 0.792

Si 0 2.04

Mn 0 2.52

P 0 0.11

S 0 0.046

Cu 0 2.04

Ni 0 3.49

Cr 0 2.8

Mo 0 1.11

Nb 0 0.098

V 0 0.099

Ti 0 0.069

B 0 0.02

Al 0 1.55

N 0 0.0270

O 0 0.118

Cooling Rate (°C/s) 0.001 30

(12)
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ficient for P was barely significant, and its effect was small; 
so, it was excluded from the equation.

The regression shown in Equation 12 for WM UTS appeared 
similar to the following regression equation by Mesplont 
(Ref. 29), which is suitable for high-strength bainitic steels 
with C content below 0.8 wt-% and the following range of 
compositions: Mn < 2 wt-%, Si < 1.8 wt-%, Cr < 2 wt-%, Mo 
< 0.8 wt-%, Cu < 1.6 wt-%, Ti < 500 ppm, P < 700 ppm, Nb 
< 800 ppm, and B < 30 ppm.

𝑈𝑈𝑈𝑈𝑈𝑈(𝑀𝑀𝑀𝑀𝑀𝑀) = 288 + 803(𝐶𝐶) + 178(𝑈𝑈𝑆𝑆) + 83(𝑀𝑀𝑀𝑀) + 
1326(𝑀𝑀) + 60(𝐶𝐶𝐶𝐶) + 122(𝐶𝐶𝑟𝑟) + 320(𝑀𝑀𝑀𝑀) + 

2500(𝑁𝑁𝑁𝑁) + 180(𝑈𝑈𝑆𝑆) + 36000(𝐵𝐵) 
 

The adjusted R2 of the fit improved when the grain size was 
approximately calculated and added to the model. This can be 
done using the equation for YS that contains grain size (Ref. 5) 
and further making an assumption about dissolved nitrogen.

UTS is also found to be linearly correlated with YS. Regres-
sion expressions for CVN at 28 and 100 J could not be 
identified.

Ar3 vs. UTS

Subsequently, the coalesced Ar3 values assigned to 595 
records in the analysis set were correlated with experimental 
values for WM UTS reported in Evans’s database. A regres-
sion of computed Ar3 against UTS showed a poor fit with an 
adjusted R2 of only 0.304, as shown in Fig. 6. This poor fit is 
understandable as Ouchi et al. and Trzaska’s equations for Ar3 
do not include all principal and minor alloy additions, cooling 
rate, or (average) prior-austenite grain size.

During the filtering process, records having a computed 
Ar3 value lower than 680°C were excluded. If these records 
were included, they would appear as strong outliers in Fig. 
6. The correlation factor between the initial computed Ar3 
and WM UTS was –0.551.

As mentioned earlier, Evans’s WM dataset did not pro-
vide a direct correlation between computed values of Ar3 and 
experimental values of WM UTS. Consequently, the proposed 
new expression for Ar3 was formulated as discussed below.

Ar3 Regression Using Ilman’s Experimental 
Data

The 13 experimental Ar3 (i.e., TS) values provided sepa-
rately by Ilman et al. (Refs. 9–11) are well explained by cooling 
rate and material compositions, although certain elemental 
weight percentages remain constant. To mitigate the adverse 
effects of multicollinearity issues, the data was augmented 
using a few records reported in Lolla et al. (Ref. 35), Vega et 
al. (Ref. 36), and Deva et al. (Ref. 38).

A good Ar3 regression model for this small dataset was 
as follows:

𝐴𝐴!"(°𝐶𝐶) = 1185.95 − 6.55(𝐶𝐶𝑅𝑅) − 534.02(𝐶𝐶) + 
394.05(𝑆𝑆𝑆𝑆) − 330.45(𝑀𝑀𝑀𝑀) + 1586.63(𝑇𝑇𝑆𝑆) + 
64477.78(𝐵𝐵) + 3093.8(𝐴𝐴𝐴𝐴) + 4606.92(𝑁𝑁) + 

7827.45(𝑂𝑂) − 24156.63(𝑇𝑇𝑆𝑆#) − 842.71>√𝐴𝐴𝐴𝐴@ − 
1502.42>√𝑂𝑂@ − 1653160.12(𝑇𝑇𝑆𝑆 × 𝐵𝐵) − 
79158.05(𝑇𝑇𝑆𝑆 × 𝑁𝑁) − 91474.94(𝐴𝐴𝐴𝐴 × 𝑁𝑁) 

 
  

where CR is the cooling rate in °C/s. The cooling rate for 
Illman et al.’s experimental weld data is set at 13 °C/s. The 
adjusted R2 of the above regression is 0.95. This regression 
expression indicated that cooling rate and a few of the major 
elements (in wt-%) are good predictors of Ar3. The decreases 
observed in some experimentally determined values of TS 
were especially well predicted by this model. The prediction 
error is less than 1% for all the data included in the model.

It was mentioned earlier that a balanced addition of Ti, B, 
Al, N, and O significantly decreased the measured TS vs. the 
calculated Ar3 values. This can be observed in the regression 
model without the inclusion of the cooling rate as a predictor. 
As shown in Table 2, the sum of Ti, B, Al, N, and O minor alloy 
additions decreased as the experimental TS value increased 
in this small dataset. This seemed to be a good indicator. But 
the adjusted R2 of the model, including only the alloying ele-
ments, was not high even though it offered good predictive 
capabilities. Once the cooling rate was added as a predictor 
and the effects of the multicollinearity issue were mitigated, 
the adjusted R2 of the model improved significantly.

Ar3 Regression Using Composite Data

It is quite apparent that more experimental data is needed 
to refine the Ar3 regression from Ilman et al.’s data to achieve 
higher reliability and to make the formula applicable over a 
much wider data range. The 75 experimental records pro-
vided by Mintz et al. (Ref. 28) were included first. Additionally, 
21 records in Evans’s dataset that were in Salganik et al.’s 
(Ref. 26) data range were selected and assigned Ar3 values 
using Salganik et al.’s modified Ar3 expression (Equation 10). 
Another 23 records from Evans’s dataset with coalesced Ar3 
values were added to constrain the regression at applicable 
data boundaries and interior points and to guide the regres-

(13)

(14)

Fig. 11 — A plot of UTS against new Ar3 values 
(Equation 20) in another cluster with a very strong 
negative correlation.
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sion process. Additional experimental data reported in Refs. 
29, 30, and 33–43 were also included. Appendix I provides 
details of the respective datasets. Additionally, 20 numeri-
cal steel records with random element concentrations at a 
very low range around 0.01 for primary elements and around 
0.0001 for minor elements were added using Ouchi et al.’s 
expression (Equation 4). Overall, 257 records were collected 
to obtain a new Ar3 expression using a multiple linear regres-
sion. The experimental data along with coalesced Ar3 values 
at selected extreme and interior points in Evans’s dataset 
served as guideposts to regression in lieu of full experimental 
data on WM transition temperatures in Evans’s database.

The regression expression for Ar3 from this composite 
dataset was obtained as follows:

𝐴𝐴!"(°𝐶𝐶) = 906.49 − 2.78(𝐶𝐶𝐶𝐶) − 439.3(𝐶𝐶) + 
34.17(𝑆𝑆𝑆𝑆) − 36.7(𝑀𝑀𝑀𝑀) − 8.5(𝐶𝐶𝐶𝐶) − 51.2(𝑁𝑁𝑆𝑆) − 
27.08(𝐶𝐶𝐶𝐶) − 63.48(𝑀𝑀𝑀𝑀) − 1765.95(𝑁𝑁𝑁𝑁) − 
520.29(𝑉𝑉) − 2401.12(𝑇𝑇𝑆𝑆) − 1784.44(𝐵𝐵) + 
21.89(𝐴𝐴𝐴𝐴) + 5300.15(𝑁𝑁) − 420.96(𝑂𝑂) + 

297.07(𝐶𝐶#) − 16.4(𝑀𝑀𝑀𝑀#) + 11668.54(𝑁𝑁𝑁𝑁#) + 
458.21(√𝑇𝑇𝑆𝑆) − 1142.45(√𝑁𝑁) + 298.91(√𝑂𝑂) 

 
 

where CR is the cooling rate in °C/s. The adjusted R2 of this fit 
was 0.9087. The standard error of the residuals was 24.89. 
The intercept value of this new Ar3 expression was close to 
910°C, the Ae3 (equilibrium austenite-ferrite transformation) 
temperature for pure iron.

Several nonlinear terms were included to cover a wide 
range of 14 elemental compositions (except P and S) in 
Evans’s dataset. Most of the p-values of the intercept and the 
coefficients of C, Mn, Ni, Cr, Mo, Si, Ti, Nb, N, C2, Mn2, Nb2, Al, 
V, √Ti, √O, and √N were very significant or marginally signifi-
cant. The coefficients of Cu and O also did not have p-values 
below 0.05, but they were left as indicated by regression 
because their values were in the expected range. The new 
Ar3 regression equation predicted the decreases observed 
in measured values of TS reported in the experimental data 
in Table 2 within a 2 to 3% error range in most cases. This 
equation is also likely to predict Ar3 values over the entire 
range of Evans’s dataset reasonably well.

The above new Ar3 regression equation for WM UTS appears 
similar to Miettinen’s (Ref. 44) Ar3 regression equation, which 
also includes several nonlinear terms. It is also partly simi-
lar to the complex expressions for transition temperatures 
reported by Kasatkin et al. (Ref. 31).

Other nonlinear terms and cross terms are recommended 
in the context of critical temperature and CCT diagram 
models by Miettinen et al. (Ref. 45). The regression equation 
by Miettinen et al. (Ref. 45) also refers to the cross term Cu × 
B, among others. The model from the current investigation 
also predicted the significance of this cross term. The qua-
dratic term Nb2 is also recommended by Yuan et al. (Ref. 46). 
For the sake of simplicity and to assess the impact of major 
and minor elements in Evans’s database, the new regression 
expression for Ar3 shown in Equation 15 was felt sufficient 
for the intended purpose.

The new Ar3 regression formula is applicable over almost 
the entirety of Evans’s database. The related data limits for 
various elements and weld cooling rate are shown in Table 4. 

Figure 7 shows a plot of UTS against the proposed new 
Ar3. A linear regression of UTS against the proposed new 
Ar3 is indicated by the straight line in Fig. 7. The line passes 
through the data better compared to the one indicated in 
Fig. 6. The adjusted R2 of the fit of the new Ar3 against UTS is 
0.499 compared to 0.3058 in the previous fit in Fig. 6. This 
indicates that the new Ar3 is likely to better predict UTS. The 
regression relation is the following:

𝑈𝑈𝑈𝑈𝑈𝑈	(𝑀𝑀𝑀𝑀𝑀𝑀) = 1242.93 − 0.91	𝐴𝐴!"(°𝐶𝐶) 

Cluster Analysis

The scatter in Fig. 7 is attributed to various inherent 
metallurgical characteristics of different clusters of exper-
imental data in Evans’s dataset. Many of these metallurgical 
characteristics include the amount of free nitrogen; size 
and composition of the inclusions and precipitates; effect 
of tempering caused by the deposition of over-lying runs; 
microphase morphology (e.g., the form of the carbides); rel-
ative grain sizes of the coarse-grained, fined-grained, and 
the intercritical regions; etc. (Ref. 47).

The individual experimental clusters were indicated by 
weld ID tags in the data with different colors in Fig. 7. The 
scatter can be better explained when each experimental 
cluster is examined and combined with similar individual 
experimental clusters. Evans’s database contains 73 weld 
experimental clusters. The pruned dataset of 595 records 
contains 55 weld clusters. These individual weld clusters 
exhibit various trends in UTS vs. the new Ar3 values. Some 
individual weld clusters have strong down trends, several 
of them have even up trends, and many of them do not have 
strong trends in UTS vs. Ar3. Some weld clusters have only one 
or two data points. The rest have three or more data points. 
Table 5 shows the statistics on selected individual weld clus-
ters and the regression of UTS vs. the new Ar3 of each weld 
cluster using the R2 value, intercept and slope of the line, 
and trend indicator. Table 5 also shows the minimum and 
maximum WM UTS (in MPa) in the respective weld series and 
the corresponding number of data points in the weld series.

The above individual clusters can be grouped further. This 
was accomplished manually using TIBCO Spotfire® (Ref. 48). 
When the individual weld clusters are grouped, the informa-
tion can be condensed in a few charts to explain the scatter 
in Fig. 7, and the impact of combining various microelements 
on UTS can also be understood more clearly. In general, the 
trend between UTS and Ar3 temperature should be as indi-
cated in Fig. 1. However, Evans’s WM data contains at least 
four types of composite weld clusters: a cluster of clusters 
with a strong or moderate negative correlation between 
UTS and Ar3, a cluster of clusters with a positive correlation 
between UTS and Ar3, and a composite cluster of clusters 
with a very strong negative correlation. The respective data 
are illustrated in Figs. 8–11.

(15)

(16)
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Table 5 — Regression and Summary Statistics of Selected Weld Series in Evans’s Database

Weld ID R2 Intercept Slope Trend
Minimum UTS

(MPa)
Maximum UTS

(MPa)
Count

AB 0.251 81.238 0.493  Up 454 499 12

ACoNb 0.876 1600.655 –1.390 Down 481 705 9

ACoV 0.910 1355.749 –1.076 Down  481 590 10

ACrTi 0.766 1473.870 –1.276 Down 494 597 11

ACuTi 0.623 4176.206 –4.508 Down 492 686 6

Al 0.658 –629.981 1.520 Up 529 570 9

AlN 0.657 –627.983 1.518 Up 529 570 9

AlO 0.616 –517.523 1.375 Up 524 581 26

AlTi 0.341 1122.213 –0.747 Down 514 622 33

AlTiN 0.407 –1588.414 3.030 Up 583 622 6

AMoTi 0.840 2333.428 –2.248 Down 492 694 20

ANiTi 0.714 884.939 –0.475 Down 492 562 15

AoPlus 0.281 942.227 –0.531 Down 494 619 8

AO-Ti 0.382 1436.715 –1.177 Down 447 523 15

BN 0.196 1112.977 –0.786 Down 521 561 7

CB 0.453 1397.047 –1.135 Down 521 617 44

CMn 0.898 1610.519 –1.382 Down  462 602 12

CoPlus 0.740 1413.219 –1.177 Down 526 658 5

Cplus 0.473 1296.832 –0.965 Down 533 672 5

CrMo 0.899 1570.725 –1.357 Down 501 657 5
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In general, the experimental series indicated by weld IDs in 
the data can be joined to form a few major clusters. However, 
the conventional cluster analysis, such as K-means clustering 
(Ref. 24), cannot be performed for this dataset. The weld 
series can be combined when their UTS vs. Ar3 regression 
slopes are nearly the same and if the distances between two 

regression lines are small or their combined regression has 
nearly the same characteristics, such as adjusted R2 before 
and after adding in the new weld series to the composite 
group. The trends of the weld series in the composite clusters 
were manually identified, and the weld series were grouped 

Table 5 — (continued)

Weld ID R2 Intercept Slope Trend Minimum 
UTS (MPa)

Maximum 
UTS (MPa) Count

MnCr 0.854 1554.366 –1.330 Down 466 676 8

MnMo 0.904 2190.718 –2.089 Down 466 623 9

MnNb 0.843 1506.371 –1.219  Down 494 685 17

MnNi 0.692 1156.997 –0.823 Down 466 569 10

MnOx 0.881 1086.432 –0.748 Down 475 555 15

MnSi 0.301 1362.136 –1.023 Down 453 639 14

MnTi 0.777 1215.296 –0.879 Down 492 577 17

MnV 0.847 1504.494 –1.210 Down 494 681 20

S 0.393 –2332.078 3.723 Up 523 546 5

Tab 0.205 1133.158 –0.756 Down 404 638 45

Ti 0.678 1822.660 –1.669 Down 537 654 9

TiB 0.474 1349.502 –1.066 Down 521 617 39

TiBAlN 0.554 4341.670 –5.254 Down 594 660 4

TiBN 0.474 1349.502 –1.066 Down 521 617 39

TiN 0.517 1335.580 –1.041 Down 528 597 10

TiOX 0.466 –560.604 1.473 Up 539 596 7

Zn 0.242 1442.055 –1.186 Down 528 545 4
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using Spotfire. The underlying weld series are indicated in 
the legends in Figs. 8–11.

The respective simple regression equations of the four 
major clusters between UTS and Ar3 are as follows:

Strong negative correlation

𝑈𝑈𝑈𝑈𝑈𝑈	(𝑀𝑀𝑀𝑀𝑀𝑀) = 1528.9 − 1.25𝐴𝐴!"(°𝐶𝐶) 

Moderate negative correlation

𝑈𝑈𝑈𝑈𝑈𝑈	(𝑀𝑀𝑀𝑀𝑀𝑀) = 1330.97 − 1.05𝐴𝐴!"(°𝐶𝐶) 

Strong positive correlation

𝑈𝑈𝑈𝑈𝑈𝑈	(𝑀𝑀𝑀𝑀𝑀𝑀) = −475.1 + 1.33𝐴𝐴!"(°𝐶𝐶) 

Very strong negative correlation

𝑈𝑈𝑈𝑈𝑈𝑈	(𝑀𝑀𝑀𝑀𝑀𝑀) = 2363.94 − 2.29𝐴𝐴!"(°𝐶𝐶) 

The R2 values of the regression lines in Figs. 8–11 were 
0.727, 0.814, 0.638, and 0.913, respectively.

Most of the remaining weld series can be combined into 
another composite cluster. The adjusted R2 value of the 
regression of UTS vs. Ar3 in this cluster was 0.55.

Figures 8, 9, and 11 indicate that UTS decreased with Ar3 in 
general. Figure 10 indicates that UTS increased with Ar3 for a 
small number of cases, but this increase strongly depended 
on WM elemental compositions. The element combinations 
in the first cluster (Fig. 8) are likely to yield quite predictable 
weld strengths. The element combinations in the second 
cluster (Fig. 9) with moderate negative correlation may yield 
stronger welds though UTS may be less predictable. Ar3 values 
below 680°C seemed to provide UTS above 640 MPa. Figure 
10 indicates that aluminum and nitrogen contents created 
an unexpected positive correlation between UTS and Ar3, 
and the respective UTS values were below 580 MPa. It can 
be noted that the charts indicate different ranges of UTS for 
different combinations of the underlying experimental clus-
ters. Figures 8 and 11 show clusters that can yield a maximum 
UTS close to 700 MPa. Weld experimental data on certain 
groups such as TiBAlN also indicate the possibility of achieving 
UTS greater than 710 MPa. These high UTS values from the 
TiBAlN series were not included in the analysis. So, they do 
not appear in Figs. 8 or 9.

The above correlation or relationship between WM UTS 
and the new expression for Ar3 temperature that includes 
the effects of principal and minor alloy elements (in wt-%) 
and weld cooling rate (in °C/s) are expected to complement 
the JWES neural network currently available to predict CVN 
test temperature for 28 J absorbed energy based on WM 
chemical composition, thus providing a pair of effective tools 
for efficient development of welding electrodes based on an  
Fe-C-Mn system for high-performance applications.

Conclusions
Several new relationships have been obtained using the 

selected SMA WM dataset in Evans’s database. A new equa-
tion for Ar3 temperature in low-alloy steels containing several 
minor elements was derived using a novel approach. The 
analysis was carried out using a machine learning approach 
for multiple linear regression in R.

Initially, all the records in this database were examined 
from various perspectives. The previously discussed charts 
and regression results indicate salient perspectives of this 
data and the new results reported.

The SMA WM database is quite large compared to typical 
datasets reported in metallurgical literature. Understand-
ing the message conveyed by this large database is quite 
daunting. Machine learning approaches, including auto-
mated model finding using multiple regressions, improve 
our productivity in discovering the relationships embedded 
in the data.

The analysis reported here indicates that WM UTS can 
be correlated linearly with WM elemental composition. This 
regression equation improved notably after the inverse 
square root of approximate grain size was added as another 
predictor. The WM UTS had a linear correlation with YS. The 
test temperature for CVN at 28 or 100 J absorbed energy did 
not correlate fully well with elemental compositions, UTS, YS, 
and Ar3 temperature. Only a poor-quality regression could be 
obtained even after including nonlinear terms in the regres-
sion equation of CVN at 28 J.

Evans’s database is supported by only a small dataset 
of experimentally determined Ar3 (i.e., TS) values, and this 
database does not provide critical temperatures for all the 
reported WMs in the database. This was rectified in our effort. 
The 13 experimental values of records containing Ar3 (or TS) 
were combined with various experimental data indicated 
in Appendix I, a small number of records in Evans’s data-
set that obeyed data range for Salganik et al.’s expression 
for Ar3 (Ref. 26), and 23 extreme high-end points in Evans’s 
dataset. Twenty numerical records on various steels were 
also added at very low element concentrations, and their Ar3  
values were set using Ouchi et al.’s expression (Equation 4). 
Using this composite dataset, a new Ar3 regression relation 
applicable to the entirety of Evans’s database was derived. 
This expression includes several nonlinear predictors, and it 
was designed to include a large data range in Evans’s dataset 
and to accommodate some nonlinearities expected in the fit 
and in the underlying physical phenomena. The expression 
also improves prediction accuracy for five records in ques-
tion in Ilman’s experimental data. This expression should 
also predict Ar3 for all records in Evans’s database to a very 
good approximation.

The relation between UTS and Ar3 exhibits a significant 
scatter and low-regression quality. Closer examination 
using a cluster analysis revealed that individual weld series 
in Evans’s database contributed to the scatter, and they can 
be combined into at least four clusters, namely, one cluster 
having a strong negative correlation between UTS and Ar3, 
another having a moderate negative correlation between 
UTS and Ar3, a third small cluster having a strong positive 
correlation between UTS and Ar3, and a fourth cluster having 

(17)

(18)

(19)

(20)
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a very strong negative correlation between UTS and Ar3. The 
second and fourth clusters seemed to provide clues to create 
the strongest welds with UTS approaching 700 MPa.

Future research may generate more experimental data to 
improve the regression result for the Ar3 expression applicable 
to Evans’s WM dataset. Various WM transition temperatures 
and cooling rates could be determined experimentally and 
documented for a few additional points in Evans’s WM data-
set, including those with elemental composition in the high 
wt-% range. A full factorial design does not appear to be 
necessary.
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