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Abstract

Structural lightweighting through the effective 
use of multiple materials has received increasing 
attention for fulfilling today’s demands for 
environmental sustainability in transportation 
systems. Direct dissimilar material joining methods 
(versus, e.g., traditional adhesive bonding or 
mechanical fastening) have become increasingly 
desirable since they offer process simplicity, 
production efficiency, and hermetic sealing, 
among others. In this two-part article, we provide a 
critical assessment of the state-of-the-art research 
and promising direct dissimilar material joining 
techniques reported over the last decades, with a 
particular emphasis on their potential for structural 
applications in Part I. As such, recent advances 
in advanced joint design and modeling methods 
for enabling optimum joint design for jointability 
and joint performance are presented along with 
some detailed examples for demonstrating their 
potential impacts on industrial applications in Part 
II. Finally, recommendations on future research and 
development directions are outlined for supporting 
the industry’s drive towards multi-material 
lightweighting. 
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Introduction
To ensure sustainability of the environment and quality of 

life, effective use and reuse of existing materials have become 
increasingly important in transitioning to a circular econ-
omy (Refs. 1–3). As part of such an effort, major automotive 

manufacturers have been leading the drive toward structural 
lightweighting over the last decade or so (Refs. 4–7). The 
consensus resulting from recent major research initiatives is 
that multi-material structure, i.e., “using the right material at 
the right place,” offers the most effective lightweighting in 
addition to achieving multi-functionalities (Refs. 8–12]). For 
instance, the US Department of Energy (DOE) multi-material 
lightweight vehicle (MMLV) autobody structure (Ref. 13), 
made of high-strength steel, aluminum, magnesium alloys, 
and carbon fiber polymer composites can offer up to 40% 
weight reduction versus all high-strength steel structures, as 
highlighted in Fig 1. However, the challenge has been how to 
cost-effectively manufacture such multi-material structures 
in a mass-production environment while ensuring structural 
durability, and recyclability. Traditional mechanical fastening 
incurs additional part counts and adds weight while adhe-
sive bonding increases production cycle time in addition to 
its implications for long-term durability and recyclability of 
adhesive-bonded components (Refs. 14–16). To mitigate 
some of the major concerns, direct welding of dissimilar mate-
rials (polymer to metal or between incompatible metals, 
e.g., aluminum to steel) has gained growing attention in the 
research community over recent years (Refs. 17–19).

There have been some promising successes in developing 
methods for direct welding of polymer or polymer-composite 
to metal. For instance, Liu et al. (Ref. 20) demonstrated that 
the functional groups in polyamide (PA) or nylon enabled its 
direct welding with aluminum alloy without any surface or 
material pre-treatment through a carbon-oxygen-metal (aka 
C-O-M) chemical bond formation under localized heating and 
pressure conditions, e.g., via a friction-assisted lap welding 
technique. Using the friction-assisted spot method, Khan et 
al. (Ref. 21) recently demonstrated that a nonpolar polypro-
pylene (PP) composite can be directly welded using a thin 
layer of functional group seeding material between the PP 
composite and metal partner without special surface treat-
ments. Han et al. (Ref. 22) have shown the joining of PP sheet 
with aluminum alloy using a metal surface laser texturing by 
micromechanical interlocking under friction-assisted spot 
joining. Kawahito et al. (Ref. 23) have shown successful joining 
of steel and PA under pulsed laser joining and achieved strong 
joints. The combination of PA or PP and aluminum or steel can 
be used to reduce weight in some of the automotive interior 
components. As shown in Fig. 2A, recent applications of PP 

APRIL 2024 | 117-s



in GM liftgates and PA composites in GMC Sierra trucks (Fig. 
2B) have shown the importance of directly joining polymer 
composites with aluminum and steel structures for structural 
lightweight applications in mass production environments. 

It should be noted that the direct joining of incompatible 
dissimilar metals such as aluminum alloys to steel (involved 
in MMLV in Fig. 1) has been facing similar challenges due to 
the formation of brittle intermetallic compounds (IMCs) at 
the joining interface (Refs. 24–26). Recent research efforts 
have shown that brittle IMCs can be effectively avoided 
through a nanoscale shear localization process beyond a 
threshold strain rate under certain friction stir welding con-
ditions. As a result, the aluminum-steel interface exhibits a 
dominantly amorphous microstructure which offers high 
interfacial bonding strength and excellent thermal stability 
(Refs. 27–30). Good thermal stability is important to restrict 
the nucleation and growth of IMCs at thermal cyclic loading 
conditions (Ref. 148). 

The use of fiber-reinforced thermoplastics has been a 
prime mover in the automotive industries due to recyclability 
(Refs. 31–34) and has been seeing an uptake in aerospace 
and marine structures as well (Refs. 35–38). It is expected 
that the need for recyclable polymers and lightweighting 
requirements will enable the use of thermoplastics for as 
much as up to 40% of the total material in automotive struc-
tures (Refs. 13, 39). PA and PP are the most common polymer 
materials being used in the automotive industries due to 
their formability, low cost, and recyclability (Refs. 40–43). 
PP, due to its low density compared with other industrial 
polymers and high corrosion resistance, is widely used in 
the automotive industry (Refs. 44–47). The direct joining of 
metals with polymer or polymer composites thus eliminates 
multiple process steps, mechanical fasteners, and adhe-
sives and provides strong joints capable of hermetic sealing 
required for applications under pressure and severe weather 
environments (Refs. 17–19). As recently suggested by some 
recent studies (Refs. 48–50), direct dissimilar material joining 

Fig. 1 — Structural lightweighting through a multi-material concept (Ref. 13).

Fig. 2 — A — A lightweight liftgate concept made of GFPP of passenger van (Ref. 43); B — a lightweight truck 
cargo bed made of a metal-polymer hybrid structure (gmauthority.com).
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also offers improved structural reliability under dynamic and 
fatigue loading conditions.

As highlighted above, multi-material or mixed-material 
structures made of dissimilar metals, polymers, and polymeric 
composites have been becoming increasingly important for 
meeting today’s increasingly stringent weight reduction, 
energy efficiencies, and recyclability requirements (Refs. 
51, 52). However, robust, reliable, and cost-effective joining 
methods are still in the early research and development stage. 
Among various new dissimilar material joining methods under 
exploration today, direct joining of polymer to metal is of the 
most interest in the mass-production environment and can 
be a key enabler for realizing the advanced multi-material 
structures (e.g., the one shown in Fig. 1) cost-effectively. Along 
this line, this paper is structured as follows: After a brief intro-
duction of the need for direct joining methods for effectively 
integrating polymer composites into metal for structural 
applications, some of the promising direct joining methods 
will be critically reviewed and assessed in Section 2. Their pro-
cess characteristics, bonding mechanisms involved, as well 
chemical bonding enhancement techniques are discussed in 
Section 3. Then, in Section 4, some promising bonding and 
joint strength enhancement techniques are discussed. We 

then conclude Part I of this state of the art review by identi-
fying remaining critical research areas for achieving reliable 
direct polymer to metal joining enabling structural applica-
tions. As a sequel to Part I, in Part II (Ref. 149), joint property 
characterization methods, particularly those that are relevant 
for supporting computer-aided engineering (CAE) for design 
and structural performance evaluation will be discussed. One 
of the key outcomes of Part II is mechanics-based principles 
for achieving optimal design of dissimilar material joints for 
improved jointability and joint performance in load-bearing 
structures. Finally, some of the unresolved research issues for 
enabling reliable structural applications will be summarized 
for consideration by the research community.

Promising Direct Joining Techniques
Here, a direct joining technique is defined as a method 

by which a polymer or its composite forms (e.g., reinforced 
through glass or carbon fibers) can be joined with a metal 
substrate by forming chemical bonds without needing any 
separate surface or material pretreatment or curing pro-
cess (Ref. 48). Among all promising direct joining processes 

Fig. 3 — Schematic of localized heat and pressure conditions to join metal and polymer.

A B

Fig. 4 — Variants of laser-assisted joining: A — Conduction joining; B — transmission joining.
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reported in the literature to date, localized heat and pressure 
are the necessary ingredients (Fig. 3) for providing favorable 
thermomechanical conditions for the formation of chemical 
bonds. In this regard, thermoplastic polymers and their com-
posites including glass fibers and carbon fiber composites 
are often considered for joining with metals and their alloys. 
Among them, polymers with carbonyl functional groups, such 

as polyamide (PA) or nylon, polycarbonate (PC), and polyether 
ether ketone (PEEK) have been shown to possess weldability 
with aluminum 5xxx, 6xxx, and 7xxx alloys for automotive 
and aerospace applications, i.e., without needing any spe-
cial surface or material treatment before joining. Whereas 
polymers lacking carbonyl functional groups, such as PP, 
and PE, typically require special surface treatment such as 

Fig. 5 — Nd:YAG vs. diode laser (LD) joining method characteristics (Ref. 23).
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Fig. 6 — Effect of laser process parameters on joint load capacity (Ref. 60).
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metal surface laser texturing for mechanical interlocking or 
chemical treatment to enable chemical bonding with metal 
counterparts, therefore, continuing to pose significant chal-
lenges for achieving direct joining with metals.

For dissimilar material combinations discussed above, 
localized heating and pressure can be achieved through a 
variety of means, e.g., laser, electrical resistance, induction, 
ultrasonic vibration, and friction. Some of the promising 
direct joining processes are described and discussed below, 
based on their process capability, particularly for structural 
applications.

Laser-Assisted Joining Processes

Process Description

It utilizes a laser source to generate laser beams of suitable 
wavelength to project onto the metallic sheet and locally 
heat the interacted area. A customized clamping system is 
often used to provide localized pressure conditions for the 
molten polymer to interact with the metal sheet and form 
the joint. The laser beam can be projected directly on the 
metal surface to heat and melt the polymer (plastic) under-
neath (conduction joining CJ, Fig. 4A) or it can pass through 
a transparent polymer to heat the metal at the assembly 
interface (transmission joining TJ, Fig. 4B) (Refs. 23, 53). 

Conduction joining (CJ) can be implemented for opaque 
polymers when the laser wavelength can’t penetrate the 
polymer sheet without significantly damaging it. Laser beams 
can be applied either in spot configuration or linear configu-
ration per the joint design requirements and shielding gases 
such as Argon (Ar) or Nitrogen (N2) are often used to protect 
material surfaces and control the temperature.

Key Process Parameters and Joint Formation 
Mechanisms

Laser beam shape, power density, laser wavelength, and 
scanning speed collectively affect the joining quality between 
a given metal and polymer combination. Laser power density 
is a function of laser power and defocused distance. Com-
bined with laser beam shape and wavelength, the interaction 
volume or fusion zone can be controlled to provide sufficient 
wetting of the metal surface with polymer. The directed laser 
heats the metal, and the localized rapid heating further melts 
and often generates inherent bubbles at the metal/polymer 
interface. One key consideration in such laser-assisted poly-
mer-metal joining is the amount of bubbles formed during 
localized rapid heating. Such bubbles, although can help by 
generating pressure between the molten layer of polymer 
and metal substrate, in excess, lead to a poor bonding qual-
ity. For example, Kawahito et al. (Ref. 23) used a continuous 
wave (CW) 1.5 kW Nd:YAG laser beam with a 1064 nm wave-
length and a 200W laser diode (LD) laser beam with an 807 

Fig. 7 — A — Fiat panda roof grill made of steel-PA composite using laser and induction joining (compositesworld.
com); B and C — aircraft fuselage structure made of Al-PPS composite using friction spot joining (Refs. 17, 68).
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nm wavelength to join stainless steel with PA, polyethylene 
terephthalate (PET) and polycarbonate (PC) and used Ar and 
N2 as shielding gases for continuous wave and laser diode 
mode respectively. Gas bubble formation was found to be 
minimal under CJ mode for linear configuration using a laser 
diode laser beam while joining SUS304 and PA (Fig. 5). 

Furthermore, a defocused laser beam can be used to 
regulate heating zone size, geometry, and beam/material 
interaction volume (Refs. 54–56). Consequently, a larger 
defocus distance increases the weld width and spreads the 
temperature and energy uniformly. However, an optimal defo-
cus distance, laser power density, and spot size are often 
necessary, and the optimum values change for the material 
combination provided (Refs. 57–59). Jung et al. (Ref. 60) 
found that there is always an optimal laser power and scan-
ning speed to obtain the strongest joint made of steel and 
nylon (PA6) composite (Fig. 6). The clamping pressure plays 
an indirect role during the weld formation process and can 
be generated by a mechanical, pneumatic or servo-elec-
tronically driven device. It is found that a minimum contact 
pressure to keep the joining counterparts closely in contact 
is necessary to achieve good interfacial bonding, resulting 
in stronger joints demonstrated through mechanical testing 
(Refs. 61–63). Applying too-high pressure can deteriorate 
interfacial bond quality. Metal and polymer usually have 
an extremely high thermal conductance difference and 
the application of pressure also ensures a continuous heat 
diffusion between these highly different materials. It also 
affects bubble formation and thus controls the final bond 
to a significant extent (Ref. 64, 65).

Joint Strength and Structural Applications

The joint strength is governed primarily by the material 
interaction volume and interface quality at the metal/poly-
mer joining interface which in turn is controlled by localized 
heating (Refs. 66, 67). Figure 7A shows a recent application 
of laser joining of steel with PA composite for a FIAT panda 
roof grill and represents the adaptability of the laser joining 
method in automotive structures. To develop a continuous 
production throughput, the laser joining method further 
requires due automation and qualification for load-bearing 
applications.

Friction-Based Joining Processes

Process Description

Friction-based direct joining between metal and polymer 
shares a great deal of similarities with friction stir welding 
(FSW) but differs in fundamentals. The major difference is 
not only in the tooling pin functionality but also in geometry 
(Refs. 17, 69–72). It generates friction heating by rotating the 
friction tool against the metal part of the joint. The resulting 
local heating rapidly diffuses to the metal/polymer interface 
to cause the melting of the polymer in contact with the metal 
underneath the rotating friction tool. By design, such fric-
tion-based direct joining processes using rotational friction 
tool simultaneously produces both localized heating and 
pressure through the rubbing action between the rotating 
tool head and the metal surface. A sufficient closing contact 

Fig. 8 — Schematic of friction-based spot joining method.
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pressure at the joint interface is necessary to keep the joining 
counterparts in close contact as in the case of the laser join-
ing. Such contact pressure can be achieved through the same 
unitary system (embedded with the tooling system) or by a 
binary system (externally via clamps or temporary fixtures). 
It can be used either for spot (Figs. 8 and 9) or linear (Fig. 10) 
joining configurations under the same principle. The linear 
joining configuration has been termed friction lap welding 
(FLW) or friction lap processing (FLP) and was initially used 
by Okada et al. (Ref. 147) to join metal and polymer sheets. 
The spot joining configuration has been termed friction spot 
joining (FSpJ) and has been found considerably advanta-
geous due to its ease of process control.

Key Process Parameters and Joint Formation 
Mechanisms

The tool impression area, tool rotation rate, plunge force or 
depth, and weld time (spot time in spot joining configuration 
or linear welding speed in linear joining configuration) play 
important roles in achieving the desired joining between a 
given metal and polymer combination. The diffusing heat 
resulting from friction heating rapidly raises the polymer 
temperature, and the continuous heat generation raises 
the volumetric temperature above the bulk melting point 
of the polymer (Figs. 8 and 9). Thus, this molten polymer 
reacts with the metal surface present at the vicinity forming 
the chemical bond at the joint interface under the localized 
heat and pressure conditions. Excess temperature ther-
mally decomposes the polymer material and deteriorates 

the joining interface by introducing gaseous bubbles both 
in friction spot joining (FSpJ) and friction lap welding (FLW) 
unequivocally (Refs. 73–75). For example, Khan et al. (Ref. 21) 
used spot joining configuration to achieve good interfacial 
direct bonding between AA6061 and PP composite and found 
that an initial minimum contact pressure was achievable 
through fine-tuning the friction tool forge depth, for which 
1800 RPM and 12-s spot time seemed to provide high-quality 
interfacial bonding, as shown in Fig. 17B. The spot weld time 
was found to be affecting the joint formation at a constant 
tool rotation rate and forge depth. Liu et al. (Ref. 72) utilized 
the FLW (Fig. 10) to join AA6061 and MC Nylon-6 (PA6) and 
achieved superior quality joints at 3000 rpm and 200 mm 
(7.874 in.)/min linear welding speed. The welding speed for 
linear welding was seen to be affecting the polymer melt pool 
and interfacial bond formation differently. A higher linear 
welding speed, although, reduced thermal energy (Fig. 11) 
and bubble volumes, also reduced the polymer melt pool 
volume. A further examination of the linear welding speed 
effects on joint strengths suggested that the joint strength 
decreased with increasing welding speed, however, not more 
than 22% for a 5 m (16.404 ft)/min welding speed compared 
to a 1 m (3.280 ft)/min welding speed (Ref. 76).

Joint Strengths and Structural Applications

Due to the lack of joint design guidelines and well-accepted 
strength testing methods, a common practice of using the 
nominal area defined by friction tool impression has been 
used in literature for joint strength estimation (Refs. 17, 71, 

Fig. 9 — Spot joints made using the FSpJ method, cross-section, and process temperature characteristics  
(Ref. 71).

A B

C D

E F

APRIL 2024 | 123-s



72, 77, 78). In the case of FSpJ, using the outer sleeve area 
the joint strength was found to be over 20 MPa for AZ31/
PPS-CF joint under optimal parameters of 1950 rpm, 0.25 
mm (0.010 in.) plunge depth, and 8-s spot time (Ref. 71). 
Under the same tooling configuration, AA2024/CF-PPS joints 
provided similar results although at 2900 rpm and 4.8-s 
spot time (Ref. 77). Figure 9 demonstrates aluminum alloy 
joined with the PPS composite using FSpJ in an aircraft skin 
panel to emphasize the adaptability of friction-based joining 
methods in the aircraft manufacturing industry.

Roles of Chemical Bonding

To achieve maximum joint strength in a metal-to-poly-
mer joint, one straightforward way adopted in some of the 
publications is to demonstrate that a polymer-to-metal joint 
under lap-shear condition fails away from the weld area, e.g., 
across the polymer substrate, which is referred to here as 
a base material (BM) (Refs. 21, 78). Although this may be 
achieved through some of the traditional joining processes, 
such as adhesive bonding with sufficiently large bonding area 
design and/or introducing mechanical interlocking, chemical 
bonding at the molecular level is highly desirable for hermetic 
sealing purposes. Along this line, Liu et al. (Ref. 20) provided 
direct evidence of Al-O-C type chemical bond formation 
at the joining interface between PA6 and aluminum alloy, 
resulting in a joint strength higher than PA polymer base 
material. Khan et al. (Ref. 21) further achieved similar results 
for PP/6061 joints with a PA6-type seeding layer placed at 
the interface between aluminum alloy and PP composite. 
Such types of covalent bonds can also function as a barrier 
for moisture penetration through the interface to provide 
strong hermitic sealings. Based on these promising results, 
a brief discussion of various types of chemical bonding at 
the interface is provided in the ensuing section.

Direct Chemical Bonding Between 
Polymer and Metal

Role of Functional Groups

Once the necessary localized heat and pressure conditions 
can be achieved to melt the polymer at the polymer/metal 
interface, the ability to form chemical bonds is dependent 
on the chemical structure of the polymer under consider-
ation. Based on the electronic charge affinity, polymers can 
be either functional polymers (polar polymers) or polyole-
fins (functionally inert or non-polar polymers) (Ref. 79). 
Functional polymers have active functional groups made of 
electronegative species, such as oxygen (-O), or nitrogen 
(-N), attached to the main chain or branching chain of the 
polymer, are hydrophilic and polar in nature, such as PA-6 
(Fig. 12B). On the other hand, polyolefins do not possess 
any active functional group or electronegative species in 
or around the main chain of polymer, and are hydrophobic, 
functionally inert, or non-polar in nature, such as PP (Fig. 12A).

Various researchers have shown successful direct joining of 
polymethylmethacrylate (PMMA) (Refs. 57, 80–82), polycar-
bonate (PC) (Refs. 83, 84), polyethylene terephthalate (PET) 
(Refs. 85–88), polyamide (PA) (Refs. 72, 89–91), polyether 
ether ketone (PEEK) (Refs. 56, 92, 93), and polyetherimide 
(PEI) (Refs. 94, 95) polymers with metals. These polymers 
have at least one active functional group made of oxygen 
(-O) and thus, are polar and functionally active. Liu et. al. 
(Ref. 20) illustrated that functional groups like carbonyl (C = 
O) help develop chemical bonds with metals under optimal 
conditions. Thus, the direct joining with metals without any 
surface modifications can be effectively achieved if carbonyl 
(or the like) functional groups are present in the main chain 
of the polymer such as nylon-6 (PA6), shown in Fig. 12B. A 

Fig. 10 — Friction lap joining schematic for metal-polymer joining (Ref. 17).
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molecular dynamic simulation was developed which showed 
that 80% of the reacted C=O bonds form linear Al-O-C bonds 
and the rest develop a triangular Al-O-C bonding structure 
(Fig. 13). A further analysis using the XPS was subsequently 
performed, and the formation of Al-O-C chemical bond was 
confirmed, as shown in Figs. 12E and F. 

Thermomechanical Conditions

Chemical Kinetics and C-O-M Bond Formation

Chemical bonding at the joining interface can be defined 
when the covalent bond formation takes place between 
the metal and the polymer. Physical bonding such as Van 
der Waals forces or hydrogen bonding can also appear at 
the joining interface (Refs. 18, 48, 97). Once the localized 
heating raises the polymer temperature to its flowable state 
(melting point), its polymeric chains with functional groups 
gain energy to actively interact with metals at the molecu-
lar level. At the same time, surface energy increases on the 
heated metal surface and the available carbonyl groups in 

the polymer develop chemical bonding to form an intimately 
bonded interface. Chemical bonds have a much higher 
bonding energy (250–1000 kJ/mol) compared to either 
the physical forces (2–40 kJ/mol) or hydrogen bonds (50 
kJ/mol) (Ref. 98). Covalent bonds are the strongest bonds 
after ionic bonds among other types of bonds (Refs. 98, 99). 
This further substantiated the conclusion by Liu et al. (Ref. 
20) that the C-O-M type covalent bonding must have taken 
place between metal (-M) and polymer (C=O) joining coun-
terparts at the joining interface owing to its considerably 
high bonding energy (Figs. 12E and F) observed at the joint 
interface (Refs. 20, 78). 

Another important attribute of covalent bonds is the length 
of the chemical bonds at the polymer-metal interface. Gen-
erally, the covalent bonds are much smaller than the water 
molecule (≈0.27 nm across) and if the joining interface is 
well-developed by forming the chemical bonds at the inter-
face, it becomes impervious to water or moisture molecules 
(Ref. 48). Such an interface provides strong hermetic sealing 
along with good load-bearing capacity to metal-polymer 
hybrid joints demanded for pressure containment structural 
applications. Additionally, the chemical bonds at the joining 
interface become unstable when re-heated at a sufficiently 

Fig. 11 — Temperature and cross-section characteristics under friction lap joining method (Ref. 78).
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high temperature above the melting point but below the 
degradation temperature of polymers. Such a reversible pro-
cess provides an advantage to disassembly of metal-polymer 
hybrid joints for repair and reuse.

Alternative Chemical Bonding Possibilities

Hirchenhahn et al. (Ref. 100) have performed an interest-
ing study and proposed another chemical bonding theory 
between PA66 and the native oxide of the aluminum sheet 
when joined using a laser joining process. They suggested that 

Fig. 13 — Chemical bond formation via MD simulation (Ref. 96).

Fig. 12 — A — Non-polar polypropylene; B — PA6 with carbonyl group; C — chemical interaction at the joining 
interface of metal and polymer; D — AA6061 and Nylon joining under FLW and cross-section views (Ref. 20);  
E and F — XPS spectra confirming C-O-Al bonds at 0.8 nm and 3.2 nm depths, respectively (Ref. 78).
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the native oxide layer gets transformed into surface hydroxyl 
groups and then this hydroxyl group reacts with the available 
carbonyl group (C = O) group in the PA66 chain to formulate 
CHNOAl+-type species (Fig. 14). They further investigated 
the covalent chemical bonding between the aluminum and 
polymer chain using XPS and time of flight secondary electron 
microscopy (ToF-SIMS). In their investigation, they concluded 
that C-O-Al chemical bonds were indeed formed between the 

carbonyl group and the available aluminum using ToF-SIMS 
rather than XPS. Zhao et al. (Ref. 97) have further illustrated 
a different bonding mechanism under injection molding of 
PA6 polymer over AA5052 sheets. Due to the presence of 
inherent oxide on the aluminum surface and susceptibility 
towards hydrocarbons, the formation of metal hydroxide is 
probable. Under such circumstances, the metal hydroxide 
can also contribute to chemical reaction sites. Although there 

Fig. 14 — ToF-SIMS spectra near weld line for Al-PA joint and proposed model chemical reaction (Ref. 100).
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Fig. 15 — Hydrogen bond formation during Al-PA joining and IR spectra at Al-PA joint interface (Ref. 97).
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appeared a significant level of mechanical interlocking at 
the joint interface, they concluded that the observed joint 
strength was significantly enhanced by the hydrogen bonding 
between the -CONH (containing C=O carbonyl group) group 
of the PA6 and the hydroxyls (-OH) on the aluminum surface. 
Using AFM-IR, they confirmed the formation of hydrogen 
bonds at 1630 cm-1 wavenumber conforming with the IR 
spectra at the joining interface (Fig. 15). All these studies 
further demonstrate that the presence of carbonyl group 
(C=O) is critically important to achieving a strong chemical 
bonding between metal and polymer substrates.

Functional Group Seeding

Non-polar polymers (i.e., polymers without functional 
groups in their chemical structure) are not capable of directly 
forming chemical bonds at the metal-polymer interface (Refs. 
20, 101–105). One cost-effective solution was to introduce 
functional group seeding either in-situ or ex-situ. Along this 
line, Liu et al. (Refs. 48, 106) have recently proposed that 3D 
distributed chemical bonds (3D ChemBonds) can be pro-
duced in-situ between metal and polymer through trapped 
air pockets at the joint interface. These air pockets induce 
the necessary carbonyl groups in the inert polymer which in 
turn helps form the chemical bond observed. 

Khan et al. (Ref. 21) recently developed a simple and 
effective functional group seeding method via using a read-
ily available PA6 thin film between aluminum alloy and PP 
composite to enable the metal-PP composite joining under 
a friction-based joining process, as illustrated in Fig. 16. This 
technique is shown working well for polymer composites with 
inert polymer resins and any combination of reinforced fibers. 
Once the seeding material is placed between the metal and 

the inert polymer composite sheets, suitable conditions of 
temperature and pressure need to be imposed to melt both 
polymers and formulate an intermixed multi-material fiber 
composite at the interface. Using an off-the-shelf 50 µm thin 
PA6 film not only the joining was enabled between aluminum 
alloy and GFRP-PP composite (Fig. 17), but the load-bearing 
capability was also maximized such that the joint did not 
fail under the lap shear tensile condition, rather, the base 
GFRP-PP material failed at the bulk material through-thick-
ness (Fig. 17).

Their investigations showed that the joint interface 
between PP and aluminum alloy was intimately bonded 
through the thin PA6 intermediate layer forming an inter-
mixed composite network among the available glass fibers 
and the PP matrix (Fig. 18). A closer look at the Al-PA interface 
(Fig. 18) revealed that the joining interface is indistinguish-
able at a 200 nm length scale suggesting strong possibility 
of chemical or molecular level bonding at the joint interface 
between Al and PA materials.

Bonding and Joint Strength Enhancement 
Methods

Although direct chemical bonding between metal and 
polymer substrates can be achieved if inherent functional 
groups are present in the polymers (polar polymers such as PA 
or PC), for engineering applications, additional measures for 
ensuring sufficient joint strength are required. This is because 
chemical reaction sites at a joint interface can be limited or 
nonuniformly distributed, due to process variability. There 
are numerous metals or polymer surface or bulk material 
pre-treatment techniques being reported in the literature, 
as briefly highlighted below.

Fig. 16 — Schematic of functional group seeding methodology.
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Metal Pre-Treatment

Metal pre-treatment can be used to generate mechani-
cal features at various length scales to assist and increase 
mechanical interlocking effects (Refs. 110–115). When 
performed at micro or nano scale (Refs. 116–119), this also 
increases the surface energy of the metal surface and pro-
vides higher wettability. Laser texturing (Fig. 19A) has been 
efficient in developing mechanical grooves to provide an 
anchoring effect and increase joining between metal and 
polymers (Refs. 22, 120–122). A sequence of chemical etching 

using sodium hydroxide (NaOH), hydrochloric acid (HCl), and 
hydrazine (N2H4) is another way to locally dissolve metal 
surfaces (usually soft metals such as aluminum alloys) and 
generate nanopores (Fig. 19B) to assist seeping in the polymer 
melt and form micro-mechanical interlocking effects (Ref. 
107). Electrochemical etching (surface anodizing) has also 
been an effective method to generate a controlled honey-
comb morphology (Fig. 19C) on aluminum alloys for joining 
with non-polar polymers (Refs. 108, 123–125). Alternatively, 
silane-type chemical coupling agents (Refs. 126–128) and 
plasma electrolytic oxidation (Refs. 129, 130) can be used 

Fig. 17 — Al-GFPP joint formation using functional group seeding and substrate failure (Ref. 21).
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Fig. 18 — Bonding interface in Al-GFPP joints (Ref. 21).
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Fig. 20 — Polymer pre-treatment methods: A — Effect of plasma treatment on PP surface conditions (Ref. 131); 
B — effect of MAH grafting on PP (Ref. 132).

Fig. 19 — Metal surface pre-treatment methods: A — Laser texturing on the metal surface (Ref. 22); B — 
chemical etching method to generate micro mechanical anchoring effect (Ref. 107); C — surface anodization in 
aluminum to provide honeycomb pores (Ref. 108); D — mechanism of silane coupling (Ref. 109).
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on the metal surface when mechanical anchoring features 
are not desirable. Silane is a chemical coupling agent with 
multiple carbonyl (C=O) type functional groups. Due to its 
strong polar nature (Fig. 19D), it reacts with the metal sur-
face (or native oxide when available) to form strong linkages 
between the metal and the polymer joining partners. For 
example, it generates chemical reaction sites by formulating 
a covalent bonding in addition to the proposed hydrogen 
bonding compared to the untreated condition (Fig. 19D) when 
joining aluminum alloy with PA6 (Ref. 109).

Polymer Pre-Treatment

Other than micro-mechanical interlocking methods, the 
polymer side can be treated either on the surface or in a 
bulk manner (Refs. 133–137). These processes share the 
same principle of either inducing or providing functional 
groups (C=O) on the surface or in the bulk of the polymer 
matrix and are called polymer functionalization. For exam-
ple, using controlled atmospheric and inert vacuum plasma 
treatments distinguishable carbonyl groups (C=O) can be 
generated on the PP surface (confirmed by XPS in Fig. 20A) 
(Refs. 104, 131, 138–140). On the other hand, bulk grafting of 
PP using anhydride has also proven vital to functionalize PP 
and enable joining with metal counterparts (Refs. 141–145). 
Maleic anhydride (MAH) is one of the most used grafting 
compounds which contains multiple carbonyl type (C=O) 
functional groups in its cyclic chemical structure (Fig. 20B). 
Untreated PP can be used in small pellets in a blend with MAH 
and the blend can be co-extruded to form a modified grafted 
PP (MAH-g-PP) below the decomposition temperature of 
PP. Carbonyl-type functional groups thus can be grafted in 
the PP and the surface energy of such grafted-PP increases 
(Refs. 101, 137, 146). Surface energy increase and introduc-
tion of functional groups make it possible for grafted PP to 
react chemically with the metal joining partner under the 
prescribed localized heat and pressure conditions.

Limitations of Bonding Enhancement Methods 

Most surface treatment methods discussed above are 
still cost and time-prohibitive for use in mass production 
environments. For instance, mechanical or physical surface 
modification of the metal side is time-consuming. The result-
ing mechanical protrusions tend to serve stress concentration 
sites in structural applications. Chemical bulk structure mod-
ification or chemical surface treatment on the polymer side 
involves various steps to be followed to achieve a reasonable 
bonding strength in metal polymer hybrid (MPH) joints. The 
process of functionalizing non-functional (non-polar) poly-
mers generates a very thin layer of such carbonyl groups, 
usually of a few hundred nanometers, and requires immediate 
joining operation before degradation occurs. This can be 
a major limitation for its use in a production environment.

Concluding Remarks
A state-of-the-art assessment of polymer-metal joining 

research and promising techniques have been presented, 
with a particular emphasis on their potential for structural 

applications in the mass-produced marketplace. Direct weld-
ing of polymer to metal is not only possible but also shows the 
potential for applications in mass-production environments, 
in addition to its simplicity and excellent joint performance 
for some dissimilar material combinations. To accelerate a 
broad adoption of this novel joining technique for supporting 
the industry’s drive towards multi-material lightweighting, 
three major hurdles need to be overcome. These are; (1) an 
improved understanding of C-O-M chemical bond devel-
opment mechanisms and their controlling parameters; (2) 
effective procedures for extracting joint properties from 
simple lab test specimens for supporting computer-aided 
engineering of multi-material structures; and (3) joint design 
guidelines for improved jointability in process and joint per-
formance in structural context. 

Regarding the C-O-M chemical bond mechanisms, the car-
bonyl functional group (C=O) has been the most important 
chemical component for achieving the strong direct joining 
between the metals and the polymers (plastic). However, 
there are multiple theories on the bond formation mecha-
nisms. Al-O-C type covalent bond formation between the 
aluminum and the polymer chain via carbonyl group, cova-
lent bond formation between native aluminum oxide and 
the polymeric chain, and hydrogen bonding between the 
native aluminum oxide and the polymeric chain via hydroly-
sis of hydrocarbons in conjunction with the carbonyl group 
is among the top. The Van der Waals effect at the bonding 
interface is also considered a contributing factor. How to 
experimentally confirm one dominant bonding mechanism 
and to what extent over others under a given direct joining 
process condition remains challenging. The ability to do so is 
important for developing an optimized direct joining process 
for promoting the uniformity and sufficient length scale of 
the resulting covalent chemical bond. In addition to capa-
ble measurement and characterization techniques, novel 
experimental approaches to isolate and promote the bonding 
mechanisms can be effective for elucidating a favorable bond 
formation environment. Such insights played a key role in 
their subsequent process development. 

With an improved understanding of the C-O-M bonding 
mechanisms and the chemical bond quality improvement 
techniques reviewed in this article, some mainsteam struc-
tural applications are expected to be realized shortly for 
achieving ever-increasingly structural lightweight goals by 
the transportation industry.
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