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Real-Time Seam Tracking without Spatial Lag using 
Reversed Electrode Image in Robotic GTAW —  
Part I: Seam Tracking of Variable Curvature Weld

A new method was developed and verified for real-time tracking with  
no spatial lag based on REI during the robotic GTAW process
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Abstract

This paper provides a new perspective on seam 
tracking in the welding process that has no spatial 
lag and does not require additional auxiliary light 
sources. The method is helpful for weld tracking 
under complex working conditions. The proposed 
seam tracking method is RST-REI (robotic seam 
tracking by REI), which is based on weld pool 
reversed electrode images (REIs) in the GTAW 
process. By using the passive weld pool image of 
the welding process and the relationship of REI 
and the welding torch pose, RST-REI achieved 
high-precision weld seam tracking and correction. 
RST-REI consists of two parts: first, a weld tracking 
model based on REI, which can calculate the error 
between the welding torch and the position to be 
welded through the tungsten electrode, REI, and 
passive image information and correct the robot 
pose in the welding process; second, an efficient and 
robust image processing algorithm, which uses the 
segment anything model to extract the electrode 
and REI foreground image in the weld pool image 
in real time. With the help of quadratic curve fitting, 
it could accurately extract the required parameters 
for calculating the welding torch pose in the RST-
REI model. Furthermore, the experimental results of 
straight-line, right-angle, and S-shaped weld seams 
showed significant performance with the tracking 
error within 30 pixels, which was about 0.5 mm in 
our experiments. The tracking results met the weld 
tracking requirements of the actual welding process.
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Introduction 
In intelligentized robotic welding systems, more and more 

perception, control, and decision-making algorithms are 
being applied to the welding process, among which visual 
sensing plays an important part (Refs. 1, 2). Visual sensing of 
the welding process is divided into two categories according 
to whether an active light source is used: active and passive. 
Active visual sensing uses light sources such as line-struc-
tured light (Refs. 3, 4) and dot matrix-structured light (Ref. 
5) for auxiliary illumination. Through the reflection of the 
weld pool and the welding base material. it can realize weld 
seam tracking or three-dimensional reconstruction of the 
weld pool in the welding process with high accuracy. Yuming 
Zhang et al. (Ref. 5) proposed a groundbreaking approach 
to use the reflection information of dot-structured light to 
measure and control 3D weld pool geometry characterized 
by width, length, and convexity in the GTAW process based 
on the reflection of structured light by the weld pool’s sur-
face morphology. Furthermore, Yuming Zhang et al. (Ref. 
4) used the reflection information of line-structured light. 
They combined it with a deep convolutional neural network 
model to successfully realize the recognition of the pene-
tration state in the GTAW process.

Compared with active visual sensing, passive visual sens-
ing does not require an additional light source. Using arc 
light in the welding process for sensing has the advantage 
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of rich image information. Passive visual sensing is often used 
for quality monitoring, such as penetration state recognition 
of the welding process (Ref. 6). Based on passive visual sens-
ing, in 2017, Chen et al. (Ref. 7) first proposed the reversed 
electrode image (REI) method to monitor the surface height 
and penetration state of the welding process. Furthermore, 
using REI, Chen et al. (Ref. 8) proposed a 3D weld pool surface 
geometry measurement method. This method uses monocu-
lar passive vision to realize three-dimensional reconstruction 
and quality control of the weld pool, with the advantages of 
simple equipment and high reliability.

Another important direction of welding visual sensing 
application is weld seam tracking (Refs. 9–13). Fan et al. (Ref. 
9) adopted the minimum value of adjacent frames to filter 
out spatter noise for narrow gap butt welds, extracting the 
weld centerline and laser stripe equation based on the gray 
scale division features of each row and column in the image 
and fitting the weld feature points. Xiao et al. (Refs. 3, 14) 
proposed a weld seam tracking method based on the laser 
stripe feature. Based on the Siamese tracking framework, 
the proposed adaptive tracking framework can achieve sig-
nificant tracking performance in various weld seams under 
strong welding noise. 

However, for high-precision weld visual tracking, con-
ventional weld tracking methods often require additional 
auxiliary structured light sources, which leads to the com-
plexity of the sensing equipment. Moreover, the current weld 
seam tracking laser scanning sensor is installed at a cer-
tain distance from the weld pool directly below the welding 
torch. Usually, as shown in Fig. 1, the distance between the 
scanning point and the edge of the weld pool is more than 
5 ~ 10 cm. Due to the existence of this spatial distance, the 
weld scanning position in the tracking adjustment of welds 
with large curvature or broken line welds lags behind the 
actual welding torch adjustment position so that the tracking 
algorithm causes errors at the bend of the seam weld, which 
cannot meet the welding quality standard requirements or 
completely fails to track. Therefore, it is necessary to solve 
the technical difficulty of the spatial distance of the robotic 
weld tracking sensor installation on the real-time effective-
ness of weld tracking.

To address the issues mentioned above, an innovative 
method was developed and verified for real-time tracking 
without spatial lag based on REIs during the robotic GTAW 
process. This method also does not require an additional 
auxiliary light source.

As a sequence study of REIs first proposed by Zongyao 
Chen et al. (Refs. 7, 8, 15), in our previous studies (Refs. 16, 
17), based on REIs, we have established the welding torch 
pose model named REI-TPA model, which can accurately 
calculate the position and orientation of the welding robot, 
especially the welding torch, based on passive visual sens-
ing using the REI method. Based on previous work, in this 
research, we further used the REI-TPA model to propose the 
RST-REI (robotic seam tracking by REI) method aimed at weld 
seam tracking in the GTAW process. First, we constructed 
a relationship model between the REI and the weld seam; 
Second, a robust image processing algorithm for detecting 
the REI and weld pool was developed; third, S304 welding 
experiments were carried out to verify the effectiveness of the 
proposed method. This study can be further combined with 
REI-based penetration state monitoring to achieve simulta-
neous penetration control and weld trajectory control of the 
GTAW process using the REI method.

Relationship Between REI and 
Welding Torch Pose

Experienced welders perceive the weld pool image and 
sound information to adjust the welding torch posture in real 
time to obtain a good quality weld (Ref. 18). Inspired by this, 
we established a quantitative relationship model between 
the welding torch pose and the weld pool image to simulate 
the welder’s observation of weld pool information during 
the welding process. Adopting the relationship model can 
realize automatic monitoring and real-time correction of 
the welding torch pose and help improve the intelligence 
of the welding system.

Fig. 1 — Relative position between weld pool (below 
the welding torch) and laser stripe in laser vision-
based seam tracking system.

Fig. 2 — Imaging model of weld pool spherical 
surface.

392-s | WELDING JOURNAL



Weld Pool REI Imaging Model

In the GTAW process, when welding current is about or 
higher than 200 A, the surface depression caused by arc pres-
sure cannot be ignored (Ref. 19). However, due to the filling of 
filler wire, the surface of the weld pool can be approximated 
as a spherical geometry. In this paper, the adopted welding 
current was 160A. With filler wire, the surface of the weld pool 
can be approximated as a spherical geometry, caused by the 
reduced influence of arc pressure, surface tension, and gravity 
on its morphology under lower current conditions.

During the welding process, considering the weld pool 
surface exhibits a spherical geometry, the tungsten elec-
trode, illuminated by high-temperature arc light, is reflected 
by the smooth and liquid surface of the weld pool. REI is 
formed on the surface of the weld pool, as illustrated in Fig. 
2. The imaging model designates point E as the tip of the 
electrode, point F as the tip of the reflected electrode image, 
and point A as the center of the spherical weld pool surface. 
R is the radius of the spherical surface of the weld pool, and 
𝜑 is the angle between the main axis of the sphere and the 
normal of the reflection point. According to the geometric 
relationship of the light path, the position of the tip point F 
of the REI can be calculated:

 
𝐴𝐴𝐴𝐴 =

𝐴𝐴𝐴𝐴 ⋅ 𝑅𝑅
2𝐴𝐴𝐴𝐴 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 − 𝑅𝑅

	

In Equation 1, taking angle 𝜑 as the independent variable, 
performing Maclaurin expansion yields:

𝐴𝐴𝐴𝐴 =
𝑅𝑅 ⋅ 𝐴𝐴𝐴𝐴
2𝐴𝐴𝐴𝐴 − 𝑅𝑅

+
(𝐴𝐴𝐴𝐴)! ⋅ 𝑅𝑅
(2𝐴𝐴𝐴𝐴 − 𝑅𝑅)!

⋅ 𝜑𝜑! + 𝛰𝛰(𝜑𝜑") 

Since 𝜑 is a very small value, the quadratic and higher-or-
der terms of 𝜑 can be omitted in the expanded formula, and 
Equation 3 is obtained:

 
𝐴𝐴𝐴𝐴 =

𝐴𝐴𝐴𝐴 ⋅ 𝑅𝑅
2𝐴𝐴𝐴𝐴 − 𝑅𝑅

	

Letting u = AE – R, v = R– AF, f = R/2, the relationship 
between the object distance, image distance, and focal length 
in the weld pool spherical mirror imaging model is obtained:

 
1
𝑓𝑓 =

1
𝑣𝑣 −

1
𝑢𝑢 

in which f represents the imaging focal length of the weld pool 
surface, u represents the distance between the electrode 
tip and the weld pool surface (i.e., the object distance), and 
v represents the distance between the reflective electrode 
tip and the weld pool surface (i.e., the image distance). This 
equation applies to the real-time calculation of the welding 
torch pose during welding. It is worth noting that Equation 4 
is the model obtained when the weld pool surface is a convex 
spherical surface. When the weld pool surface is concave, the 
equation’s result is the same after derivation. In this paper, 
the welding process adopted DC welding below 200A, which 
meets most working conditions, and the weld pool surface 
was a convex spherical surface.

REI-TPA Model

In the GTAW process, we established TCS (the tool coordi-
nate system) and WPCS (the weld pool coordinate system). In 
TCS, the electrode tip is defined as the origin, and the center 
of the weld pool on the workpiece surface is defined as the 
origin of the WPCS. When the welding torch is in its normal 
pose, the TCS and the WPCS align, with the Y-axis directed 
along the welding path and the Z-axis oriented perpendicular 
to the workpiece surface and pointing upward, as shown in 
Fig. 3. Based on this, we established a welding torch pose 
model, which included the calculation method of the position 
and attitude of the welding torch relative to the weld point 
and the calculation method of the position and posture of 
the TCS relative to the WPCS, called the REI-TPA model. In 
previous work (Refs. 16, 17), we summarized the relationship 
model between the welding torch pose and the REI. They are 
summarized in Table 1.

Weld Seam Tracking Based on REI
By calculating the welding torch pose and combining it with 

the weld information in the weld pool image, the weld tracking 

(1)

(2)

(3)

(4)

Fig. 3 — TCS (the tool coordinate system) and WPCS 
(the weld pool coordinate system).
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can be achieved by adjusting the welding torch pose in real 
time. This section introduces the proposed RST-REI model, 
which consists of two parts: image processing, especially REI 
feature analysis of the welding process, and calculation of the 
weld tracking trajectory during the welding process.

Weld Pool Image Processing and  
REI Feature Analysis

To calculate the pose of the welding torch, the weld pool 
image needs to be processed in real time to extract relevant 
parameters. In the REI-TPA method, an HDR camera was fixed 
at the end of the robot for capturing weld pool images in real 
time; the relative position of the camera and the welding torch 
is shown in Fig. 4. In the REI-TPA model, an algorithm based 
on image segmentation model was designed to extract the 
image parameters. The image processing steps included image 
preprocessing, image segmentation, foreground extraction, 
contour point fitting, weld position extraction, etc. The algo-
rithm flow is shown in Fig. 5. The algorithm was mainly divided 
into two parts: first, the weld pool contour, electrode con-
tour, REI contour, and weld extraction in the image; then, the 
relevant parameters were extracted from the image and the 
REI-TPA model was used to calculate the position and pos-
ture deviation. The image segmentation model used was the 
Segment Anything Model (SAM) (Ref. 20), and the structure 
of the model is shown in Fig. 6.

The SAM model is based on the vision transformer (ViT) 
architecture and uses self-supervised learning for large-scale 
pre-training and deep learning to optimize segmentation 
accuracy. It has zero-shot segmentation capabilities and can 
automatically and accurately segment targets in images. It 
has high efficiency and robustness, especially in complex or 
highly interfering environments.

The designed model contained three main architectures: 1. 
ViT. The adopted SAM model used the pre-trained ViT archi-
tecture and obtained the ability to understand the image 
globally through a large-scale data set training. The ViT archi-
tecture is good at processing the global context in the image 
and was suitable for the electrode and REI segmentation tasks 
in this paper. 2. The prompting mechanism. The model could 

Fig. 4 — Relative position of camera and welding 
torch. 

Fig. 5 — RST-REI algorithm flowchart.

Fig. 6 — Model architecture overview of the Segment Anything Model (SAM).
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understand user needs and accurately delineate the target 
area, especially for REI extraction of non-real objects in this 
article. 3. The model also used a transformer-based decoder 
to optimize segmentation accuracy further. SAM could focus 
on important areas in the image through a multi-level atten-
tion mechanism and improve segmentation accuracy.

The details of image processing were as follows:
1. Image preprocessing. The image captured by the camera 

has three channels, RGB. First, the three-channel image was 
converted into a single-channel image using gray scale tech-
nology. At the same time, to remove the salt and pepper noise 
in the image, we performed median filtering noise reduction 
on the image. The image after preprocessing is shown in Fig. 7.

2. ROI extraction and image segmentation. To avoid addi-
tional computational overhead and ensure the real-time 
performance of image processing, this paper cut out irrel-
evant information in the image in the preprocessing stage 

Table 1 — The Summarized REI-TPA Model and the Required Parameters of Each Pose State

The Pose of TCS Relative to WPCS Calculation Formula Parameters Required

Normal

(5)

S, f, 𝜃, DERIC, d, u, H

(6)

Offset along X-Axis (7) S, f, dxC

Deflection around X-Axis (8) S, f, 𝜃, DERIC, d, u, H

Deflection around Y-Axis (9) S, f, 𝜃, d, u, dyC,H

Offset along Z-Axis (10) du

Fig. 7 — Preprocessed image and ROI corresponding 
area.

Fig. 8 — Electrode and REI contour: A — Segmentation result of electrode, REI, and weld pool; B — the electrode 
and REI contour curves.

A B
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and selected a 700 × 840 area as the ROI to further process 
the image, as shown in the red box in Fig. 7.

3. Foreground image contour extraction. After image seg-
mentation, the obtained electrode and REI images were used 
as the foreground. Since the electrode tip melts slightly during 
welding, its contour can be fitted with a smooth curve. This 
paper used a quadratic function to fit the foreground image 
to obtain the contour curves of the electrode and REI, as 
shown in Fig. 8.

4. Weld position extraction. The constructed RST-REI model 
needed to perform real-time calculations based on the weld 
information in the image. When calculating the weld, there 
were two states: the tungsten electrode was exactly in the 
middle of the weld. Currently, there was no deviation between 
the welding position and the weld seam position. In this state, 
the welding torch was in the right position during the welding 
process, and the welding torch posture needed to be corrected 
by the REI-TPA model. In the second state, the welding process 
had a weld deviation. Using the weld seam information col-
lected in the image, we used the boundary extraction method 
(Ref. 10) to accurately extract the weld boundary to confirm 
the parameters in the RST-REI model. Because this study is 
of weld tracking, we focused on the second state.

Seam Tracking Trajectory Calculation Based 
on RST-REI

Based on the proposed RST-REI model, the welding torch 
posture of the welding process could be calculated in real 
time, including welding torch in normal pose, welding torch 
offsets along the X-axis, welding torch deflects around the 
X-axis, welding torch deflects along the Y-axis, and welding 
torch offsets along the Z-axis. Through real-time monitoring 
of posture and combining with the welding information in the 

passive weld pool image, the welding torch trajectory and 
posture control of the welding process could be realized to 
track the weld seam.

Due to the complexity of the welding environment and the 
thermal deformation error of the workpiece, it is difficult to 
adapt to dynamic changes using traditional precise control 
methods. In the RST-REI method proposed in this paper, a 
welding torch posture adjustment method based on fuzzy con-
trol was adopted. By controlling the four variables of welding 
torch offset along the X-axis (ΔX), welding torch deflection 
around the X-axis (θX), welding torch deflection around the 
Y-axis (θY), and welding torch offset along the Z-axis (ΔZ), 
adaptive welding posture adjustment was achieved. In the RST-
REI method, a fuzzy rule control table was designed according 
to the error (E) and the error change rate (EC) to realize the 
control of the welding torch posture. The fuzzy control rules 
are shown in Table 2 for the four variables; triangular mem-
bership functions were adopted and optimally defined. It is 
worth noting that the control rules used for straight welds, 
gradient welds, and corner welds were slightly different. During 
the actual tracking process, the control rules will be switched 
automatically.

Welding System Setup and 
Experimental Verification

We established an experimental welding system to verify 
the effectiveness of the proposed RST-REI method.

Welding System

To verify the effectiveness of the proposed seam tracking 
method, a REI-based seam tracking system was developed, 

Table 2 — Fuzzy Control Rules 

Output
E

NB NM NS ZE PS PM PB

CE

NB PB PB PM PM PS ZE(PS†) ZE

NM PB PB(PM†) PM PS PS ZE NS

NS PM PM PM PS ZE NS NS(NM*)

ZE PM PM PS ZE NS NM NM

PS PS(PM*) PS ZE NS NS NM NM

PM PS ZE NS NM NM NB(NM†) NB

PB ZE ZE(PS†) NM NM NM NB NB

When the seam is a straight line, the basic control rule is used.  *for corner weld, † for curved weld.
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as shown in the diagram in Fig. 9. The Rehm INVERTIG.PRO 
digital 280 AC/DC welding power, equipped on the FANUC 
robot, was the welding actuator. The industrial computer 
had an Intel Core i7 Processor with 8 GB of memory and 
an NVIDIA GeForce GTX 1650 with 4 GB GDDR6 memory. 
The industrial computer was responsible for the real-time 
acquisition and calculation of the welding process image, 
current, voltage, and other data. It controlled the position 

and posture of the robot through the robot interface. The 
HDR camera was fixed at the robot’s end, and its position 
was fixed relative to the welding torch. The resolution of the 
collected image was 1280 × 1024, and the other parameters 
of the camera are shown in Table 3. In addition, the experi-
mental system included components such as shielding gas, 
water cooling, a wire feeder, and a Hall sensor.

Fig. 9 — Diagram of REI-based seam tracking system.

Table 3 — Camera Parameters

Type Sampling Frequency Resolution Dynamic Range

XIRIS XVC-1000 60 Hz 1280 𝗑 1024 pixels 140+ dB

Fig. 10 — Shape and size of welding workpiece and electrode: A — Shape and size of straight-line welding 
seam base material; B — shape and size of right-angle line welding seam base material; C — shape and size of 
tungsten electrode.

A B C
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Experimental Design, Materials, and 
Parameters

In the experiment, to ensure the acquisition of clear and 
stable weld pool images, S304 stainless steel plates were 
welded using DC welding. In the welding process, stainless 
steel welding wire was shielded by argon gas, the wire diam-
eter was 1.0 mm, and the wire feeding speed was 15 mm/s 
to ensure the stable convex morphology of the weld pool. 
During the experiment, the tungsten tip was polished to 40 
deg. The base material’s shape and tungsten morphology 
are shown in Fig. 10. It is worth emphasizing that, as shown 
in Figs. 10A and B, to verify the no-spatial lag property of the 
proposed method, we not only designed the straight-line 
weld seam correction but also the right-angle weld seam 
for experiment verification. Other parameters of the weld-
ing process are shown in Table 4. Furthermore, to verify 
the generalization performance of the proposed RST-REI 
algorithm, which included straight line and corner welds, we 
also conducted an experiment on S-shaped seam welding 
metal, which will be discussed in “Experimental Results.”

A welding trajectory that gradually shifted along the X 
direction was taught before welding began. The taught tra-

jectory is shown in Fig. 11, where the red line represents the 
desired tracking trajectory and the yellow line represents the 
trajectory specified during teaching. This study calculated 
the welding torch posture and trajectory using the RST-REI 
model to compensate for the errors caused by teaching and 
thermal deformation during welding.

Experimental Results

Straight-Line Weld Seam

During the welding process, we collected images in real 
time, calculated the REI characteristic parameters, and cal-
culated the weld center point using the proposed RST-REI 
model. The Euclidean distance between the calculated point 
p and the reference point p was treated as the tracking error. 
Mathematically, it was designed as:

 
𝐸𝐸(𝑝𝑝, 𝑝̂𝑝) = ∥∥𝑝𝑝 − 𝑝̂𝑝∥∥! 

̂

(11)

Table 4 — Welding Parameters

Welding Condition Parameter

Current Polarity DC-

Welding Current 160 A

Retention of Start Time 3 s

Welding Speed 18 cm/min

Argon Flow 12 L/min

Fig. 11 — GTAW teaching trajectory and expected tracking trajectory: A — Straight-line welding seam; B — right-
angle welding seam.

A B
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The error calculation results are shown in Fig. 12. It can be 
seen that the tracking errors were within 0.5 mm, which met 
the tracking accuracy requirements of the welding process.

At the same time, we compared the state of the base 
material after welding with and without RST-REI correction, 
as shown in Fig. 13. As shown in Fig. 13-B, we can see that 
without applying any correction, the path followed during 
welding gradually shifted, which led to defects in the weld. 
For the weld corrected by the RST-REI method, as shown in 
Fig. 13-A, the weld formation was good after welding, and 
there were no weld deviation defects. 

Right-Angle Weld Seam

The tracking correction result of the welding process for 
the right-angle weld seam is shown in Fig. 14. It can be seen 
from Fig. 14 B that when RST-REI was not used for correction, 
there was an obvious welding deviation defect with spatial lag 
at the right-angle corner. At the same time, since the method 
proposed in this paper has a correction effect without spatial 

Fig. 12 — Tracking error of straight-line process.
Fig. 13 — Experimental results: A — With RST-REI 
correction; B — without RST-REI correction.

Fig. 14 — Experimental result of right-angle welding seam: A — With RST-REI correction; B — without RST-REI 
correction.

Fig. 15 — Tracking error of right-angle process.

A B

A

B
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lag, when RST-REI was used for correction in right-angle 
weld seams, accurate tracking could still be achieved even 
for large corners (right angles), as shown in Fig. 14A. What’s 
more, tracking errors are shown in Fig. 15, and when the torch 
was around the corner, the tracking error increased slightly 
but was still limited to 0.5mm.

The experimental results of the straight-line weld seam and 
the right-angle weld seam with and without RST-REI correction 

showed that the proposed method has the advantages of not 
requiring spatial lag and has high tracking accuracy.

S-Shaped Weld Seam

The experimental results of straight line and right-angle 
welds showed that the RST-REI method had high tracking 
accuracy for straight and corner welds. Furthermore, to verify 

Fig. 17 — Tracking error of S-shaped process.

Fig. 16 — Experimental base metal and S-shaped weld seam tracking result: A — Base metal of S-shaped weld 
seam; B — weld seam tracking result of S-shaped seam base metal.

A B
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the generalization performance of the proposed RST-REI 
algorithm, the tracking experiment of S-shaped curve welds, 
which is different from straight line and corner welds, was 
carried out. The adopted based metal is shown in Fig. 16A. 
The tracking result of the RST-REI model is shown in Fig. 
16B. The tracking error results are shown in Fig. 17. It can be 
seen from the experimental results that for S-shaped weld 
seams with large curvature, the proposed model still had 
high tracking accuracy with no spatial lag. Therefore, the 
proposed model had good generalization performance and 
could track different types of welds with high accuracy and 
no spatial lag.

Discussions
1. During the welding process, due to the influence of 

factors such as arc pressure, local deformation of the work-
piece, and droplet transfer, the surface of the weld pool may 
fluctuate, and the weld pool surface cannot be regarded 
as a sphere. The fluctuation of the weld pool will cause the 
radius R to change, which will affect the calculation accu-
racy of the model. In the experiment designed in this paper, 
when the current was less than 200 A, the above situation 
did not occur.

2. In the RST-REI model, the welding torch posture was 
mainly calculated using the REI features in the passive vision 
weld pool image, so the calculation error of the model was 
mainly generated in the image acquisition and process-
ing process. The primary factors influencing the quality of 
image acquisition and the accuracy of image processing 
encompassed the resolution and performance character-
istics of the imaging camera, the magnitude and stability 
of the welding current, and the presence and formation of 
oxides during the welding process. A camera with a rela-
tively large dynamic range is essential to ensure adequate 
contrast between the foreground and background in the 
captured image. Moreover, a camera with high-resolution 
capabilities is also required to guarantee the computational 
accuracy of the RST-REI model. For reference, in this study, 
the dynamic range of the image captured by the camera is 
140 + dB, and the camera’s resolution was 1280 × 1024 
pixels. In the experiment, the welding current intensity 
used was relatively low to ensure the relative stability of 
the weld pool. At this current intensity, the arc radiation 
was relatively weak. Furthermore, a light reduction filter 
system was designed for the camera to prevent the arc light 
from covering the REI and the electrode in the image. The 
aperture gear was set to f/22 to reduce the interference of 
the welding arc light.

3. In this study, all welding experiments were conducted 
under tightly abutted conditions to ensure the stability of 
the weld pool morphology and to validate the effective-
ness of the RST-REI model in an idealized and controlled 
environment. However, variable joint gaps were frequently 
encountered in actual manufacturing scenarios due to tol-
erances in workpiece preparation or fixture deviation. When 
the joint gap varied, the shape of the weld pool underwent 
non-uniform deformation, which disrupted the constant 
curvature assumption embedded in the current REI feature 
model. This would lead to unpredictable fluctuations in the 

REI geometry and introduce errors in the posture estimation 
of the welding torch. Moreover, the arc behavior may also 
change in the presence of variable gaps, further degrading 
the robustness of passive visual features. Therefore, the cur-
rent model is not fully applicable to variable-gap scenarios 
without additional mechanisms such as adaptive wire feed 
speed (WFS) control or weld pool geometry compensation 
algorithms. To avoid introducing invalid assumptions and 
maintain the integrity of the evaluation, this paper limited 
the scope to tightly abutted joint conditions. It treated this 
work as Part 1 of a two-part study. Future work will explore 
extensions of the RST-REI method for variable joint gaps 
through WFS controlling and weld pool geometry compen-
sation algorithms.

Conclusions
Visual sensing and weld seam tracking technology are 

important in welding process control (Refs. 21, 22). In pre-
vious work, scholars established a penetration relationship 
model (Refs. 7, 15), a three-dimensional morphology model 
(Ref. 8), and a robot posture model (REI-TPA model) (Refs. 
16, 17) based on REIs in the welding process. This paper 
proposed a weld seam tracking method for seam track-
ing of the tightly abutted joints based on REI, the RST-REI 
(robotic seam tracking by REI) model. The conclusions can 
be drawn as follows:

1. The RST-REI model was proposed. The RST-REI method 
can realize real-time tracking without spatial lag based on 
REI (Reversed Electrode Image) during the robotic GTAW 
process, and this method also does not require an additional 
auxiliary light source.

2. A highly robust image processing algorithm was pro-
posed. This algorithm can use accurate image segmentation, 
foreground extraction, contour point fitting, and weld posi-
tion extraction, thereby extracting the parameters required 
by the RST-REI model in real time for weld tracking.

3. GTAW process tracking and correction experiments 
were carried out. The experimental results of straight-line, 
right-angle, and S-shaped weld seams showed that the pro-
posed RST-REI method has high tracking accuracy and can 
be used in actual welding processes.

4. The RST-REI model was validated under tightly abutted 
joint conditions. For variable gap scenarios, in the subse-
quent Part 2 study, adaptive WFS control and weld pool 
geometry compensation algorithms will be investigated 
to enhance tracking robustness and model applicability.

Since the RST-REI model proposed in this paper does not 
require additional sensors, it uses the image of the weld 
pool and has the advantages of a simple structure and high 
reliability. The RST-REI method can be combined with pen-
etration state recognition to achieve welding quality control 
and weld trajectory control relying only on a single image.
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Symbol or Abbreviation Meaning or Description

ZA Welding torch electrode tip

ZB Pool reflection electrode tip

D0 Distance between ZA and the surface of the weld pool

DERI Distance between ZA and ZB in WPCS

Z Welding torch electrode tip in the weld pool image

Z Reflection electrode tip in the weld pool image

DERIC Distance between Z  and Z   in the weld pool image

d Width of the weld pool

R Radius of the weld pool

S Vertical distance between camera lens and camera image plane

f Focal length of camera/imaging focal length of weld pool spherical mirror in weld 
pool imaging model

𝜃 Angle between camera center axis and welding torch

H The distance from the welding torch electrode tip to the welding workpiece surface

u The distance between the electrode tip and the weld pool surface, which was the 
same as the arc length

v The spatial distance between the tip of the REI and the weld pool surface

dx The offset distance and direction of TCS relative to WPCS along the X-axis

dy The offset distance and direction of TCS relative to WPCS along the Y-axis

dz The offset distance and direction of TCS relative to WPCS along the Z-axis

dxC
REI in the weld pool image and the horizontal distance between the electrode center 
line and the weld gap

dyC Horizontal distance between REI and electrode centerline in the molten pool image

α The angle and direction of the deflection of TCS relative to WPCS around the X-axis

β The angle and direction of the deflection of TCS relative to WPCS around the Y-axis

γ The angle and direction of the deflection of TCS relative to WPCS around the Z-axis

A
C

C
B

C
A B

C
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