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A novel as-welded bead three-dimensional profile measurement  
method based on passive and active vision coordination for multi-layer  
and multi-pass welding
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Abstract

Identifying the as-welded bead 3D profile during 
multi-layer and multi-pass (MLMP) welding is 
challenging since the as-welded bead is easily 
disturbed and similar to the surrounding weld 
beads. However, the profile of the as-welded bead 
determines whether the preset path planning and 
the welding parameters need to be adjusted to avoid 
incomplete fusion. In MLMP welding, passive vision 
sensors can distinguish weld beads but struggle 
to extract height information, while active vision 
sensors excel at obtaining height details. Thus, in 
this study, an innovative composite vision method 
integrating a passive vision sensor and an active 
vision sensor was proposed for the as-welded 
bead profile measurement in MLMP welding. A 
deep-learning model based on U-Net was used to 
extract the weld bead features in the passive vision 
image, and coordinate transformation was used to 
correspond the coordinates of passive vision images 
to those of active vision images. The experiment’s 
results showed that the method can precisely 
measure the profile dimensions of the as-welded 
bead during MLMP welding, with an error in the 
width direction of less than 5% and an error in the 
height direction of less than 7%, meeting the actual 
MLMP welding requirements.
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Introduction
Multi-layer and multi-pass (MLMP) welding, which is 

usually used to weld medium-thick plates, is an essential 
process for manufacturing industries, especially shipbuild-
ing, pipeline construction, and heavy machinery (Refs. 1–3). 
In most situations, MLMP welding is mainly manual weld-
ing or semi-automated welding, in which the operators are 
responsible for planning the position of the torch and weld-
ing parameters according to in-situ bead performance and 
workpiece distortion, while the mechanical equipment is 
responsible for executing movement and welding instruc-
tions. Therefore, skilled welders still play a significant role 
in MLMP welding.

However, fully automated MLMP welding has been initially 
realized in some special situations, such as fillet welding with-
out full penetration requirements and MLMP welding below 
three layers (Refs. 4, 5). The above situations can be auto-
mated mainly due to the small demand for real-time planning 
and the simply achieved high-precision assembly. However, 
for large structures, such as ship decks and offshore platform 
jackets, the distortion during welding is serious and cannot 
be ignored, and high-precision assembly becomes much 
harder. Therefore, offline programming planning will not 
be suitable. In these cases, robotic MLMP welding is mostly 
used in teaching and playback (Ref. 6).
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By studying the operational behavior of skilled welders, 
it can be found that they will adjust the position of the torch 
and the welding parameters according to their experience 
after observing the as-welded bead profile. The relationship 
between the as-welded bead profile and the subsequent 
weld parameters built intuitively by skilled welders is the key 
to perfect MLMP welding beads and the key reason recent 
robots cannot be fully automated. Hence, accurately mea-
suring the profile dimensions of the as-welded bead in MLMP 
welding is the most important problem to be solved.

Integrating sensors with robots has become a highly viable 
approach to achieving precise weld bead profile measure-
ments. Common sensing methods in welding include arc 
sensing (Ref. 7), acoustic sensing (Ref. 8), thermal sensing 

(Ref. 9), and vision sensing (Refs. 10, 11). Vision information 
represents over 80% of the data gathered during welding 
(Ref. 12). Therefore, vision sensing is the most advantageous 
method for the observation of the weld bead profile. Vision 
sensing is divided into passive and active types. For instance, 
Ge (Ref. 13) and Xu (Ref. 14) have utilized diagonal differen-
tial operator processing and improved Canny algorithms to 
detect the edges of weld beads and weld pools. However, 
passive vision has shown significant shortcomings in practical 
applications, as it struggles to obtain height information and 
is highly susceptible to environmental interference during 
welding. Given the limitations of passive vision, active 
vision sensors have emerged. Active vision sensors, aided 
by auxiliary light sources, such as lasers, are widely used in 
various welding applications (Ref. 15). Laser line features are 

Table 1 — Result of Laser Strip Calibration

Coefficient Image 1 Image 2 Image 3 Average Value

k 1044.2 1038.5 1044.8 1042.5

j 0.0537 0.0536 0.0535 0.0536

Fig. 1 — Experiment platform setup and vision camera positions: A — Experiment platform setup; B — vision 
camera positions and captured images in this study; C — vision camera position and captured images (Ref. 19). 

A
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extracted and processed using various algorithms. Zhang 
(Ref. 16) proposed the adaptive dynamic thinning algorithm 
to determine the geometric parameters of the molten pool 
depression. Zou (Ref. 17) successfully minimized noise inter-
ference and achieved high tracking accuracy by combining 
morphological image processing with a continuous convolu-
tion operator-tracking algorithm. Jin (Ref. 18) extracted weld 
bead width and height dimensions from active vision images 
through edge detection and smoothing processing. In sum-
mary, advanced image processing can obtain more-accurate 
dimensional results. However, these methods are limited if 
the edge features are unclear, such as the partly covered 
adjacent weld beads in MLMP welding.

A composite vision method was recently proposed to 
solve the MLMP weld bead recognition problem. Zeng (Ref. 
19) proposed a recognition method to identify the edges of 
weld beads using a directional light source and a line laser, 
in which the sensors and the torch are fixed, and the plate is 
moved. The directional light source images and the line laser 
images are alternately collected and separately processed. 
Then the processed results are fused to accurately obtain 
the edges of weld beads. However, the method uses a large 
number of devices that occupy more space, resulting in poor 
system accessibility; the control logic for alternately captur-
ing images by sensors is relatively complex, which imposes 
high-performance requirements on the devices.

In recent years, deep-learning technology has made sig-
nificant progress. With its unique network structure, U-Net 
has performed exceptionally well in image segmentation 
tasks and has gradually been applied to the welding field. 
Zhang (Refs. 20–23) measured and predicted the profile 
of the weld pool by using active vision and deep-learning 
models such as CNN and U-Net. Feng (Ref. 24) proposed an 
end-to-end deep-learning-enhanced framework for multi-
source sensing of weld pool images, processing images with 
different deep-learning models, including U-Net, and jointly 
predicting the weld depth. These indicated that it is feasible 

to use multi-sensor and deep learning to accurately measure 
MLMP weld bead profiles.

In this study, a composite vision method with a passive 
vision sensor and an active vision sensor was proposed for 
measuring intermediate as-welded bead profiles, for which 
the time difference of sensor acquisition was compensated. 
This paper is organized as follows: the experiment platform 
setup, calibration methods, and results are described in the 
“Experiment Platform and Calibration” section; a series of 
image-processing algorithms and feature extraction methods 
for intermediate as-welded beads of each layer are proposed 
in the “Image Processing and Feature Extraction section; 
finally, the feasibility of the method and system is verified by 
comparing the fitted dimensions with measured dimensions.

Experiment Platform and Calibration

Experiment Platform

The overall experiment platform setup is shown in Fig. 
1A. It was equipped with a passive vision camera (Hikrobot 
MV-CS016-10GM) for capturing images of the as-welded 
bead surface and an active vision camera (Hikrobot 
MV-CA130-A0GM) for capturing line laser images (generated 
by a laser generator). A welding source (Aotai MAG-500PRO) 
and its accompanying gas cylinder were responsible for the 
welding work. A robot (KUKA KR 10) and its accompanying 
robot controller were used to control the motion of the torch. 
The upper computer was an industrial computer, which was 
responsible for receiving and processing the images collected 
by cameras and coordinating calculations.

Most importantly, the vision cameras of the platform 
were placed behind the torch. Figures 1B and C show the 
cameras behind and in front of the torch and their corre-
sponding images, respectively. Compared with being placed 
in front of the torch, the cameras placed behind the torch 
could be less affected by spatter and changes in brightness. 
In addition, placing the cameras behind the torch could also 
avoid re-scanning and improve the efficiency of the overall 
MLMP welding.

Coordinate System Calibration

There were two cameras, a laser generator, and a robot in 
the proposed experiment platform; therefore, establishing 
a method to convert relationships between the coordinate 
systems of so many devices was the most important problem 
to be solved for the novel proposed method. The calibration 
of the platform included the calibration of the two cameras’ 
intrinsic parameters, hand-eye calibration (Ref. 25) between 
the cameras and the robot, and the calibration of the line 
laser, as shown in Fig. 2. The principles and derivation pro-
cesses of various calibration methods are detailed in the 
appendix; the main text focuses on introducing the calibration 
results and their applications.

The calibration of the two cameras’ intrinsic parameters 
was the process of using two-dimensional plane information 
and a small amount of three-dimensional spatial information 

Fig. 2 — Schematic diagram of the coordinate systems 
in the experiment platform: A — The coordinate 
systems of the experiment platform; B — projection 
model of the camera; C — triangular projection model 
of the laser line.
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C
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to analyze the geometric relationship between the object 
points and their corresponding image points. Currently, the 
classic method for camera calibration is Zhang’s calibration 
method (Ref. 26), which calculates the camera’s intrinsic 
matrix by capturing images of a checkerboard from different 
angles. The camera intrinsic parameters were used to correct 
images and map image coordinates to camera coordinates 
and from camera coordinates to image coordinates.

According to Zhang’s calibration method, the two-camera 
intrinsic parameters are shown as follows:

𝐴𝐴!"#$ = 

#

3489.66491208 0 513.37436298

0 3495.77851983 525.40219628

0 0 1

/ 

𝐴𝐴!"#$ = 

#

3588.81355492 0 662.84378143

0 3597.11205395 644.22898891

0 0 1

/ 

Hand-eye calibration was carried out to obtain the transfor-
mation matrices between the camera and robot. The camera 
extrinsic parameters were utilized for matrix calculations 
with the robot tool coordinate, thus acquiring the transfor-
mation matrix of the camera to the robot coordinate system. 
Once these transformation matrices were obtained through 
hand-eye calibration, the relationship matrix between the 
two cameras could be determined via simple matrix opera-
tions. Subsequently, the pixel positions on the images of the 
two cameras were mapped to each other using the camera 
intrinsic parameters and the relationship matrix between the 
two cameras.

By calibrating and calculating the camera extrinsic matri-
ces and the corresponding robot position matrices (Ref. 27), 

the hand-eye calibration matrices for the two cameras were 
obtained as follows:

𝑇𝑇!"# = 

⎣
⎢
⎢
⎢
⎡
	0.06173209 −0.05903626 0.99634526 −198.50645812

−0.99807261 0.00269187	 0.06199862 −3.92231431

−0.0063422 −0.99825221 −0.0587563 63.01801909

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

 

𝑇𝑇!"# = 

⎣
⎢
⎢
⎢
⎡
0.03704426 −0.06942367 0.99689923 −101.93328551

−0.99931362 −0.00251013 0.03695917 3.07329363

−0.0000635 	−0.99758411 −0.06946901 143.10624454

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

 

The transformation matrix between the two camera coor-
dinate systems was as follows:

 

𝑇𝑇!"#" = 

⎣
⎢
⎢
⎢
⎡
0.99964116 −0.02471744 −0.0103254 −96.57317261

0.02464664 0.99967221 −0.00692897 −6.995607946

0.01049328 0.00667201 0.99992269 −80.08822545

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

 

In addition, it was necessary to establish a time correspon-
dence between the passive and active vision images of the 
same location in the weld bead based on welding parame-
ters and the physical relationship between the two cameras, 
since the two cameras simultaneously captured images from 
different positions. The time difference between the passive 
and active vision images at the same position was t = l/vw, 
where l is the distance from the line laser in the active vision 
image to the center of the passive vision image and vw is the 
welding speed.

Fig. 3 — The coordinates of the groove in the laser line image: A — Laser line image of the groove; B — the 
coordinates of the groove.

A B
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The calibration of the line laser was carried out to obtain 
the relationship between the actual width, w, and height, h, 
of the laser line and the pixel width Δv and height Δu in the 
active vision image, which was as follows:

 ℎ =
Δ𝑣𝑣 ∙ 𝑑𝑑
𝑘𝑘 − Δ𝑣𝑣 

 𝑤𝑤 = 𝑗𝑗 · Δ𝑢𝑢 

The k and j values were calculated by comparing the actual 
measured dimensions with the image pixel dimensions of the 
groove (the original joint preparation). The laser line image of 
the groove was processed to obtain the pixel dimensions of 
the groove, as shown in Fig. 3. A caliper was used to measure 
the precision-machined groove; the measured thickness of 

(1)

(2)

Fig. 4 — The overall structure model of the proposed U-Net.

Fig. 5 — Image distribution of the dataset: A — Normal image; B — disturbed image; C — translated image;  
D — mirrored image; E — image with addition of Gaussian noise; F — image with brightness change.
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the groove was 36.7 mm (h = 36.7 mm) and the width was 
48.8 mm (w = 48.8 mm), where the distance from the laser 
generator to the workpiece surface was 198.5 mm (d = 198.5 
mm). The coordinate of the line laser at the bottom of the 
groove was (650,725), and the coordinates at the top of the 
groove were (212,562) and (1120,562), resulting in Δv = 163 
and Δu = 908. The calculated k and j values were 1044.2 and 
0.0537. To minimize measurement errors, the k and j values 
for three images were calculated, as shown in Table 1. It can 
be observed that the variation in k and j values across several 
images remained within 1%, thereby satisfying the accuracy 
requirements of this method. Consequently, the relationships 
between the coordinates of the line laser in the active vision 
image and the actual dimensions were as follows:

ℎ =
198.5 · Δ𝑣𝑣
1042.5 − Δ𝑣𝑣 

𝑤𝑤 = 0.0536 · Δ𝑢𝑢 

Image Processing and Feature 
Extraction

The image processing algorithms of the passive and 
active vision images were used to extract the features of the 
intermediate MLMP as-welded beads, and the compositing 
methods of these features are also detailed in this section. The 
experiment’s conditions are listed in Table 2, and the typical 
passive and active vision images captured by the proposed 
composite vision method are shown in Fig. 1B.

Passive Vision Image Processing

The challenge of extracting the as-welded bead features 
from a passive vision image involves avoiding the interfer-
ence of the features of the groove and other weld beads. 
To address this issue, a U-Net neural network, which is a 
highly efficient convolutional neural network architecture 
specifically designed for image segmentation (Ref. 28), was (4)

Table 2 — Welding Parameters and Acquisition Parameters Setting

Parameters Values

Workpiece (S355) Dimensions (mm3) 375 × 100 × 40

Gas (80%Ar+20%CO2) Flow Rate (L/min) 20

Average Current (A) 220

Voltage (V) 24

Welding Speed (m/min) 0.36

Frame Rate of Active Vision Camera (fps) 30

Frame Rate of Passive Vision Camera (fps) 30

Exposure Time of Active Vision Camera (µs) 500

Exposure Time of Passive Vision Camera (µs) 6000

Fig. 6 — Annotation process of the dataset.

(3)
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proposed to segment the as-welded bead features from the 
passive vision images.

The overall structure model of the proposed U-Net is shown 
in Fig. 4. This model comprised four components: encoder, 
skip connections, bottleneck layer, and decoder. Images 
are represented as blocks in Fig. 4, and their sizes included 
resolution (left or right side of each layer) and channel 
number (above each block). Depending on the resolution 
of the input image and the difficulty of feature extraction, 
the proposed U-Net contained four layers in the encoder 
part. At the beginning of the encoder, an input image with 
a resolution of 512 × 512 pixels was processed through two 
convolutions (orange arrow in Fig. 4) with 64 convolution 
kernels in Layer 1, obtaining a green block with a size of 
512 × 512 × 64. Two convolutions were used to enhance 
the ability of feature extraction; the number of convolution 
kernels was equal to the channel number of the obtained 
block. The green block obtained from each layer had two 
functions. First, it was copied (gray arrow in Fig. 4) to the 
corresponding layer of the decoder through skip connections. 
Second, it was used for downsampling (green arrow in Fig. 4), 
which helped extract as-welded bead features of different 
scales by reducing resolution. As the layers went deeper, the 
number of convolution kernels gradually increased to 128, 
256, and 512 to learn more-complex and comprehensive 
as-welded bead features. The bottleneck layer received the 
down-sampling result of Layer 4 of the encoder part, and the 
channel number was adjusted by two convolutions to facil-
itate upsampling (red arrow in Fig. 4) in the decoding part. 
The decoder part also contained four layers corresponding 
to the encoder part, and the processing sequence of blocks 
was carried out from Layer 4 upward. Upsampling restored 
the resolution and changed the channel number to a value 
that matched the corresponding layer, to merge with the 
block copied through skip connections. In each layer, the 
merged blocks underwent two convolutions. At the end of 
the decoder, a convolution (black arrow in Fig. 4) with a kernel 
size of 1 × 1 and kernel number of 2 was applied to obtain an 
output image with a size of 512 × 512 × 2, whose two channels 

represented the as-welded bead area and background area 
respectively, thus extracting the as-welded bead feature 
from the passive vision image.

By analyzing about 10,000 passive vision images of ten 
intermediate as-welded beads, these images could be divided 
into normal images (as shown in Fig. 5A) and disturbed images 
with interference such as welding fume (as shown in Fig. 5B), 
with an approximate ratio of 86:14. The proportion of disturbed 
images in the dataset was appropriately increased to ensure 
the recognition accuracy of the model for disturbed images. 
To better expand the dataset, translation, mirroring, addition 
of Gaussian noise, and brightness change were carried out on 
the dataset images, and the results are shown in Figs. 5C–F. 
Finally, a dataset containing 2550 images was obtained, and 
the sample distribution is shown in Table 3. In order to facili-
tate the model training, the dataset’s images were uniformly 
adjusted to a resolution of 512 × 512 pixels without distortion 
and annotated according to the process shown in Fig. 6. In 
addition, the width comparison of the measured values and 
fitted values is shown in Table 4.

The train loss value and the val (validation) loss value of the 
proposed U-Net after 200 epochs of training are shown in Fig. 
7A; they were used together to evaluate the fitting degree of 
the model to the data. The loss values were stable at 0.013, 
indicating that the model’s prediction was very close to the 
real situation. The MIoU (mean intersection over union) value 
of the proposed U-Net is shown in Fig. 7B; this was used to 
evaluate the performance of the segmentation model. The 
MIoU value was stable at 99.05, indicating excellent model 
performance. The output image of the training U-Net model 
is shown in Fig. 7C. It can be seen that the proposed U-Net 
could accurately identify the contour of the as-welded bead 
from the other weld beads and groove.

Because a fixed position in the as-welded bead could be 
captured by multiple adjacent passive vision images, the 
features in multiple adjacent images were used to improve 
the recognition accuracy of the as-welded bead edge. The 
capture of the adjacent images was as shown in Fig. 8A. The 
point Mi (ui, vi) was the coordinate of the as-welded bead 

Table 3 — The Sample Distribution of the Dataset

Image Dataset Tra. Set Val. Set Total

Normal 270 30 300

Disturbed 189 21 210

Translated 459 51 510

Mirrored 459 51 510

Addition of Gaussian 
Noise 459 51 510

Brightness Change 459 51 510

Total 2295 255 2550
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edge in the image captured at ti moment. The vi value was 
540 (half of the image height), and the ui value was deter-
mined by identifying the as-welded bead edge. According 
to the camera parameters and welding speed vw , five adja-
cent images could be stably used to calculate the average 
coordinate of an as-welded bead edge, as shown in Fig. 8B. 
The image at ti moment was the main image and the corre-

sponding coordinate in the adjacent image of the point Mi 
(ui, vi) was Mi±n (ui±n, vi±n), n ∈ {1,2}. The vi±n value could be 
obtained as follows:

𝑣𝑣!±# = 𝑣𝑣! − (𝑡𝑡!±# − 𝑡𝑡!) · 𝑣𝑣$ ·
𝑍𝑍%
𝑓𝑓&
· 𝑊𝑊' (5)

Fig. 7 — Training results and image validation: A — Loss values; B — MIoU value; C — image validation result.

C

BA

Fig. 8 — The positional relationship of: A — Camera in adjacent moments; B — images captured in adjacent 
moments.

BA

342-s | WELDING JOURNAL



where Ws is the width of the camera pixel size available 
from the camera product specifications. The ui±n value was 
obtained by identifying the as-welded bead edge after 
 determining vi±n. All ui±n, n ∈ {1,2} were used to calculate the 
average value u, and (u, vi) was taken to be the final recog-
nized coordinate of point Mi.

Active Vision Image Processing

The active vision image, as shown in Fig. 9, contains laser 
lines of the workpiece surface, groove, and weld beads, so it 
is difficult to obtain the laser line of the as-welded bead by 
directly processing the image. According to the relationship 
between the passive and active vision camera coordinate sys-
tems, the obtained coordinates (u, vi) are used to accurately 
determine the region of interest (ROI) in an active vision image.

The coordinate transformation from passive vision image 
to active vision image is shown in Fig. 10. The coordinate of 
the edge point in the passive vision image coordinate system 
oN– uv is MN[u, vN]T. The point MN in the passive vision camera 
coordinate system MNC[XNC, YNC, ZNC]T can be calculated by 
hand-eye calibration. The point MPC[XPC, YPC, ZPC]T in the active 
vision camera coordinate system is obtained by using TNC. 
The point MP[uP, vP]Tin the active vision image coordinate 
system oP – uv can be obtained as follows:

!
𝑢𝑢!
𝑣𝑣!
1
% =

1
𝑍𝑍!"

𝐴𝐴!"#$ )
𝑋𝑋!"
𝑌𝑌!"
𝑍𝑍!"

, 

=
𝑍𝑍%"
𝑍𝑍!"

𝑇𝑇%"!" · 𝐴𝐴%"#$&' · )
𝑢𝑢/
𝑣𝑣%
1
, 

It is noteworthy that since two cameras were arranged 
sequentially along the welding direction and their fields of 
view (FOV) did not overlap, the vP would exceed the FOV of the 
active vision camera. However, the uN remained within the FOV 
of the active vision camera; therefore, the up value was retained 
for subsequent processing after coordinate transformation.

The up value was used as the standard for the u-direction of 
the ROI, as shown in Fig. 11A. The position of the line laser in 

the active vision image remained relatively constant because 
cameras and laser generators were fixed on the torch; there-
fore, the standard for the u-direction of the ROI was selected 
based on a fixed value, and the result is shown in Fig. 11B. 
The extraction result of the ROI is shown in Fig. 11C, which 
is considered to accurately describe the laser line region of 
as-welded bead.

A standard image processing strategy including denoising 
and binarization, contour extraction, center point extraction, 
and curve fitting was proposed to extract the as-welded bead 
features in the ROI image, as shown in Fig. 12. Morpholog-
ical processing using the opening operation was applied 
within the ROI area for denoising. Then the processed image 
was binarized by using Equation 7. The results of denoising 
and binarization are shown in Fig. 12A. The Sobel (Ref. 29) 
operator was employed to detect the edges of line laser in a 
binarized image by identifying areas with significant changes 
in grayscale gradients, and the results of image processing 
are shown in Fig. 12B. Then the center points of the laser 
line were extracted using the grayscale centroid method, as 
described by Equation 8. The extraction results are shown 
in Fig. 12C. Finally, Equation 9, where n = 4, was used to 
fit the surface profile curve of the as-welded bead through 
the extracted center points. The surface profile curve of the 
as-welded bead is shown in Fig. 12D.

𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) = *𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖𝑖𝑖	𝑠𝑠rc(𝑢𝑢, 𝑣𝑣) > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0						, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑣̅𝑣 =
∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣) · 𝑣𝑣!
"#$

∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣)!
"#$

 

𝑦𝑦 = 𝑎𝑎! + 𝑎𝑎"𝑥𝑥 + 𝑎𝑎#𝑥𝑥" +	··· 	+𝑎𝑎$%!𝑥𝑥$ 

PC

(6)
(7)

(8)

(9)

Fig. 9 — Information in active vision image. Fig. 10 — Coordinate transformation from passive 
vision image to active vision image.
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Feature Extraction

The actual contour curve of the as-welded bead was 
obtained by using Equations 3 and 4 to transform the fit-
ting curve in the ROI image, as shown in Figs. 13A and B. The 
maximum coordinate difference along the u axis is defined 
as the width of the as-welded bead since the u value of the 
ROI image was obtained by extracting the accurate contour 
coordinate. In contrast, the maximum coordinate difference 
along the v axis is defined as the height of the as-welded bead, 
and this standard was used to verify the fitting accuracy of 
the as-welded bead profile.

Results
A complete MLMP welding experiment was completed 

according to the experimental parameters in Table 2, and a 
total of nine layers and 29 beads were obtained, as shown 
in Fig. 14A, to verify the accuracy of the composite vision 
method.

For the verification of fitting results, the surface dimen-
sions of the weld beads were measured by using a caliper 
after each bead was welded, since the weld bead in the 
upper layer covered the weld bead in the lower layer during 
MLMP welding. For example, bead 28 after welding is shown 
in Fig. 14B, and bead 29 had not yet been welded; the bead 

Table 4 — The Width Comparison of the Measured Values and Fitted Values

Fitted (mm) Measured (mm) Error (mm) Error rate (%)

1 12.06 11.6 –0.46 3.97

2 12.23 12.0 –0.23 1.92

3 12.18 11.7 –0.48 4.10

4 12.10 11.7 –0.40 3.42

5 12.19 11.9 –0.29 2.44

6 12.33 12.0 –0.33 2.75

7 12.35 12.0 –0.35 2.92

8 12.21 12.0 –0.21 1.75

9 12.40 12.1 –0.30 2.48

Average 12.228 11.89 –0.339 2.860

Fig. 11 — Extraction of the ROI for the as-welded bead image: A — The v range of the ROI; B — the u range of the 
ROI; C — the ROI image.
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cross-sections at nine positions, as shown in Fig. 14C, were 
selected for measurement and fitting curves.

The height and width at nine positions of bead 28 are shown 
in Fig. 15; the height and width were measured using a caliper 
immediately after bead 28 was welded, and Fig. 15 was taken 
after bead 29 was welded. For convenience, the closed area 
enclosed by the white solid and dashed lines in Fig. 15 is used 
to describe the cross-sectional profile of bead 28 at the cor-
responding position, where the white solid line is the visible 
contour and the white dashed line is the reconstructed contour 
line through the recognition algorithm. The fitting curve and 
fitting dimensions based on the composite vision method at 
the selected position are shown in Fig. 16. The comparison of 
width and height between the measured value and the fitted 
value are shown in Table 5. The error rates of width and height 
were calculated by 

⎩
⎨

⎧𝜀𝜀! =
𝑊𝑊" −𝑊𝑊#

𝑊𝑊"

𝜀𝜀$ =
𝐻𝐻" −𝐻𝐻#
𝐻𝐻"

 

where 𝜀W and 𝜀H are the error rates of width and height; WM 
and HM are the measured values of width and height; and 
WF and HF are the fitted values of width and height. It can be 
seen that the average errors of the as-welded bead width 
and height were 2.860% and 3.875%, and the maximum 
errors of the as-welded bead width and height were 4.10% 
and 6.11%. Other intermediate weld beads were measured 
in the same way, and the results showed that the errors of 
width and height were less than 5% and 7%, which is con-
sidered to meet the actual requirements of MLMP welding, 
indicating that the method could effectively extract the 
profile dimensions of the as-welded bead in MLMP welding 
and provide a basis for the subsequent adjustment of torch 
position and welding parameters.

Fig. 13 — The as-welded bead fitting curve: A — Coordinate dimensions; B — actual dimensions.

Fig. 12 — The steps of surface profile curve fitting: A — Denoising and binarization; B — contour extraction; C — 
center of gravity method to extract the center point; D — fitting curve.

C

BA

D

BA

SEPTEMBER 2025 | 345-s



Fig. 15 — The measured value of the selected position.

Fig. 14 — The weld beads for verifying accuracy: A — The distribution of weld beads in groove; B — the condition 
of bead 28; C — the selected position in the as-welded bead.
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Fig. 16 — The fitted value of the selected position.

However, at present, the performance of this method has 
only been initially verified in an intermediate as-welded 
bead. The surface profile of the first and last weld beads 
of each layer will be different from that of the intermediate 
weld bead due to the influence of the groove sidewall. In Part 
2 of our series of papers, the adaptability of this method to 
the first and last welds of each layer will be highlighted, and 
corresponding optimization strategies will be proposed. 

After the availability of the identification algorithm for all 
position beads has been verified, we will focus on building 
the ultimate purpose of this system, which is to achieve 
overall identification and automatic correction for MLMP 
welding. This involves researching the algorithms for align-
ment and correction as well as system automation. The final 
verification of the overall system in the correction effect is 
planned to be shown in Part 3.

Table 5 — The Height Comparison of the Measured Values and Fitted Values

Fitted (mm) Measured (mm) Error (mm) Error rate (%)

1 5.47 5.7 –0.23 4.04

2 5.27 5.5 –0.23 4.18

3 5.07 5.4 –0.33 6.11

4 5.48 5.6 –0.12 2.14

5 5.28 5.5 –0.22 4.00

6 5.28 5.5 –0.22 4.00

7 5.48 5.4 0.08 1.48

8 5.28 5.4 –0.12 2.22

9 5.47 5.4 0.07 1.30

Average 5.342 5.49 –0.147 3.275
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Conclusion
1. A novel composite vision method was proposed for 

measuring the as-welded bead profile during MLMP weld-
ing. The method used passive vision images to identify the 
as-welded bead edges and, based on that information, used 
active vision images to obtain a 3D profile of the as-welded 
bead through coordinate transformation, thereby accurately 
measuring the as-welded bead profile dimensions. The weld 
bead height and width fitting errors of this method were less 
than 5% and 7%, respectively.

2. The active vision images were processed by a seg-
mentation method based on U-Net to solve the extraction 
challenges due to unobvious as-welded bead features, and 
the features of multiple adjacent images were used to improve 
the recognition accuracy of the as-welded bead edge.

3. The active vision images were processed by extracting 
an ROI with the transformed coordinates from passive vision 
images and then using a series of image processing algo-
rithms. The intermediate as-welded bead at each moment 
was fitted out to obtain the real surface profile.
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Appendix
The composition of the experiment platform’s coordinate 

system is shown in Fig. A(A). It includes five coordinate sys-
tems: the robot base coordinate system OB – XBYBZB; the tool 
coordinate system at the robot’s end effector, specifically the 
welding torch OE– XEYEZE; two camera coordinate systems, 
the active vision camera coordinate system OPCam – XPCamYP-

CamZPCam and the passive vision camera coordinate system 
ONCam — XNCamYNCamZNCam; and the global coordinate system 
OW — XWYWZW. 

The Calibration of Camera Intrinsic 
Parameters

The intrinsic parameters of two cameras were calibrated 
based on the camera projection model shown in Fig. 
A(B). The image coordinate system o – uv was a two-di-
mensional coordinate system. Suppose there was a point  

PW [XW,YW,ZW]T in the global coordinate system (the subscript 
represents the coordinate system in which the point or axis 
coordinates were located, and the superscript T represents 
the transposed matrix; expressions in this article will follow 
this convention), and its corresponding projection in the 
image coordinate system, which is denoted as P[u,v]T. The 
coordinate of PW in the camera coordinate system can also be 
represented as [XCam,YCam,ZCam] T. The conversion relationship 
for point P between the image coordinate system and the 
camera coordinate system was as follows:

 
𝑍𝑍! "

𝑢𝑢
𝑣𝑣
1
& = (

𝑓𝑓" 0 𝑢𝑢#
0 𝑓𝑓$ 𝑣𝑣#
0 0 1

+ (
𝑋𝑋!%&
𝑌𝑌!%&
𝑍𝑍!%&

+ 

where ZC is the scale factor; fx and fy are the scale factors of the 
u axis and v axis, respectively, and (u0, v0) is the principal point 
coordinate of the camera in the image coordinate system.

The transformation between the camera coordinate 
system and the global coordinate system belonged to the 
rigid transformation, which is represented by the rotation 
matrix R and the translation vector t:

 
!
𝑋𝑋!"#
𝑌𝑌!"#
𝑧𝑧!"#

% = 𝑅𝑅 !
𝑋𝑋$
𝑌𝑌$
𝑍𝑍$

% + 𝑡𝑡 

where R is a 3 × 3 rotation orthogonal matrix and t is a 3 
× 1 translation vector. The transformation equation of the 
global coordinate system to the image coordinate system 
was obtained as follows:

(A1)

(A2)

Fig. A — Schematic diagram of the coordinate systems in the experiment platform: A — The coordinate systems of 
the experiment platform; B — projection model of the camera; C — triangular projection model of the laser line.
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where A is the camera intrinsic parameter matrix and TW
Cam the 

camera extrinsic parameter matrix that ignores the distortion 
correction. Since the cameras had a front view of the work-
piece, the camera distortion could be ignored in this composite 
vision method. By calibrating camera intrinsic parameters, 
image pixel positions could be converted into the camera 
coordinate system.

Transition Matrix between Cameras

The coordinate transformation matrices between the cam-
eras and the robot were obtained by hand-eye calibration. 
The robot base coordinate system OB — XBYBZB and the global 
coordinate system OW — XWYWZW were always fixed, while the 
tool coordinate system OE — XWYWZW and the camera coordinate 
system OCam — XCamYCam ZCam changed with the robot position. 
Based on these coordinate transformation relationships, the 
relationship between point PW and its corresponding point PB 
in the robot base coordinate system was as follows:

𝑃𝑃! = #𝑇𝑇!")(𝑇𝑇"#)(𝑇𝑇#$'𝑃𝑃$ 
 

where TE
B is the coordinate transformation matrix from the 

robot base coordinate system to the tool coordinate system, 
and it can be obtained by robot tool center point calibration; 
TE

C is the coordinate transformation matrix from the end-ef-
fector coordinate system to the camera coordinate system, 
which is also expected to be obtained; TC

W is the coordinate 
transformation matrix from the camera coordinate system 
to the global coordinate system, and it can be obtained from 
camera extrinsic parameters. By changing the robot position, 
a new set of corresponding relationships was established as 
follows:

!𝑇𝑇!"
#)(𝑇𝑇#$)(𝑇𝑇!$

%%𝑃𝑃% = 𝑃𝑃"  

where T’B
E and T’C

W are the coordinate transformation matri-
ces at the other robot position. By combining Equations A4 
and A5, the relationship between these coordinate trans-
formation matrices is as follows:

!𝑇𝑇!"
##

$%
(𝑇𝑇"#)𝑇𝑇#& = 𝑇𝑇#&(𝑇𝑇′&')(𝑇𝑇&')$% 

Equation A6 can be regarded as an equation of the form AX 
= XB, where A = (T’B

E)-1 (TB
E); B = (T’C

W) (TC
W)-1; X = TE

C, which 
can be obtained by solving the equation AX = XB.

The coordinate transformation matrices from the active 
vision camera coordinate system and the passive vision 

camera coordinate system to the tool coordinate system are 
shown as TE

PC and TE
NC, respectively. The coordinate transfor-

mation matrix between these two camera coordinate systems 
TNC

PC can be expressed as follows:

𝑇𝑇!"#" = 𝑇𝑇$#"#𝑇𝑇$!"$
%&

 
 

Calibration of the Laser Line

A line laser can be calibrated based on the principle of tri-
angular projection, as shown in Fig. A(C). The relative position 
between the laser generator and the active vision camera 
remained constant. The distance from the laser generator 
and the active vision camera to the weld bead was almost 
unchanged during welding. By capturing line laser images 
using active vision camera and assuming a height difference 
h between two captured images, with positions in Fig. A(C) 
denoted as O’ and F, the angle between laser generator and 
camera optical axis as 𝛼, and the horizontal distance from 
laser generator to the camera optical center as OE = x, the 
similar triangle relationships are shown as follows:

𝑂𝑂!𝐹𝐹
𝑂𝑂𝑂𝑂! =

𝐵𝐵𝐵𝐵
𝑑𝑑 + ℎ 

𝐵𝐵𝐵𝐵
𝑥𝑥 =

ℎ
𝑑𝑑 

Combining Equations A8 and A9 and substituting x = tan𝛼 
· d into the resulting expression, the relationship between h 
and O’F is as follows:

ℎ =
𝑂𝑂!𝐹𝐹 ∙ 𝑑𝑑

𝑂𝑂!𝑂𝑂 ∙ tanα − O!F =
Δ𝑣𝑣 ∙ 𝑑𝑑
𝑘𝑘 − Δ𝑣𝑣 

 

where O’F = Δv, k = O’O · tan𝛼. Since the value of k is only 
related to the intrinsic parameters and the position of active 
vision camera, it can be assumed that the value of k remains 
constant during the process of capturing images. The line 
laser length relationship between the global coordinate 
system and the active vision image coordinate system is w 
= j · Δu, where w is the line laser length value in the global 
coordinate system and Δu is the line laser length value in the 
active vision image coordinate system.
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