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Abstract

Friction stir welding (FSW) process parameters 
influence welding temperature field and axial force, 
which affect welding strength. At present, how 
the FSW process parameters of aluminum alloy 
2219-T8 thick plates influence process physical 
quantity and how the process physical quantity 
changes the tensile strength about the welded 
joint are unknown. We focus on the intelligent 
prediction of FSW temperature, axial force, and 
mechanical properties, to provide a basis for FSW 
process control of aluminum alloy 2219-T8 thick 
plate. Firstly, we conducted the FSW experiment of 
aluminum alloy 2219-T8 thick plate. Then, we input 
the welding process parameters, set up a prediction 
model by particle swarm optimization-back 
propagation (PSO-BP) neural network to predict the 
peak temperature and axial force. Finally, we input 
the peak temperature and axial force, use genetic 
algorithm-back propagation (GA-BP) neural network 
to establish a weld tensile strength estimation 
model, and comply with the prediction of tensile 
strength.
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Introduction

In the last century, aluminum alloy 2219 was used to 
develop the outer container of the space shuttle with a diam-
eter of 8.4 m; the material has been widely attention since 
then (Ref. 1). Aluminum alloy 2219 has the characteristics 
of high strength, good low-temperature resistance, and low 
sensitivity to welding cracks (Ref. 2). Because of its excellent 
properties, aluminum alloy 2219 is the preferred material 
for fuel tank, train carriage, shipbuilding, and automobile 
manufacturing of spacecraft (Ref. 3). Welding is the main 
process of aluminum alloy 2219 assembly. In 1991, The Weld-
ing Institute developed a new solid-state bonding technique, 
friction stir welding (Ref. 4). FSW can effectively reduce the 
deformation and residual stress, reduce the cracks, holes, 
and other defects in the welding process (Ref. 5). As one 
of the most effective methods for achieving high strength 
aluminum welding, FSW improves welding quality.

The main welding process of FSW is as follows: The stirring 
head rotates and slowly presses into the joint surface of the 
two welds, and the stirring head rotates in place. Friction heat 
generation between the stirring head and the weldment and 
plastic deformation heat generation of the weldment make 
the material at the weld soften fully. Then the stirring head 
moves along the welding direction while rotating, the shoul-
der creates downward pressure while preventing the spillover 
of softened metal, under the heat-mechanical interaction, the 
base material is constantly stirred by the stirring head to form 
a dense combination. After cooling, a solid weld is formed to 
realize the connection of aluminum alloy materials (Ref. 6).

In the whole welding process of FSW, rotational speed and 
welding speed affect peak temperature and axial force (Refs. 
7–9). The peak temperature distribution and the magnitude 
of the axial force affect tensile strength of the welded joint 
(Refs. 10, 11). The peak temperature and axial force affect the 
stress and strain of the welded joint region, and the tempera-
ture variation in the welded joint area is an obvious indicator 
to observe the plastic deformation degree of metal materi-
als (Refs. 12, 13). Therefore, effective prediction of welding 
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temperature, axial force, and tensile strength of the welded 
joint is the key to ensure welding quality. However, in the FSW 
process, there are complex coupling effects among welding 
process parameters, peak temperature, axial force, and ten-
sile strength, which leads to difficulty in characterizing the 
correlation among them.

Some scholars have applied neural network intelligent 
algorithm to study the application of FSW process, Manvat-
kar et al. (Ref. 14) adopted the Bayesian method to establish 
five artificial neural network models, calculated the peak 
temperature, transverse force, torque, bending stress, and 
maximum shear stress experienced by the tool in the AA 
7075 friction stir process. Input welding variables including 
shoulder radius, tool speed, pin radius and pin length, welding 
speed and axial force, tool peak temperature, total torque, 
transverse force, bending stress, and maximum shear stress 
as outputs. The forecast error of peak temperature is –7.5 to 
7.5%, the predicted errors of total torque, transverse force, 
bending stress, and maximum shear stress are –12–12%. 

D’Orazio et al. (Ref. 15) set up a multivariate empirical model 
based on artificial neural network, the neural network con-
sists of four input parameters (rotational speed, welding 
speed, speed to welding speed ratio, and processing time) as 
input layer, the output layer takes vertical force as output, its 
forecast error is within –5 to 5%. Ghetiya et al. (Ref. 16) con-
ducted FSW experiments on AA8014 plates with a thickness 
of 4 mm, established the prediction model of tensile strength 
of the welded joint based on BP neural, the margin of error is 
within 3%. Wang et al. (Ref. 17) obtained the test data in the 
process of low-cycle fatigue experimental study on the 5 mm 
thick 7075-T651 aluminum alloy FSW joint, used the artificial 
neural network BP algorithm to estimate fatigue life about the 
welded joints, the margin of error ranges from 0.27 to 5.33%. 
Padmanaban et al. (Ref. 18) performed dissimilar welding on 
5-mm-thick AA2024 and AA7075 plates, measured the joint 
tensile strength under the different tool speeds and welding 
speeds, established a model by response surface methods, 
predicted the tensile strength by the particle swarm optimi-
zation algorithm optimize process parameters, and final error 
between the predicted value and the actual value is within 
5%. Alkayem et al. (Ref. 19) used the PSO algorithm for single 
objective and multiobjective optimization of tensile strength, 
elongation, and microhardness, and verified the predicted 
values through experiments, the percentage error ranges 
from 0.29 to 1.98%. Zhang (Ref. 20) carried out tensile test 
of FSW joint on 4-mm-thick 6005A-T6 aluminum alloy sheet, 
used the measured tensile strength and elongation as the 
data for SVM training and prediction, combined with MATLAB 
programming, established a relatively new prediction model 
of friction stir welding joint mechanical properties by support 
vector machine, put stirring head speed and welding speed 
as input, realized the prediction of mechanical properties of 
FSW joint. Verma et al. (Ref. 21) performed dissimilar welding 
on 6-mm-thick AA6083 and AA8011 plates, put rotational 
speed, traverse speed, and inclination angle as input, put 
tensile strength and grain size as output, predicted the per-
formance of friction stir treated joints by using support vector 
machine (SVM), the error is about 10%.

In the neural network above, the BP and PSO have high 
prediction accuracy. Some studies have also shown (Refs. 
22, 23) that when the output is multiple, the BP neural net-
work optimized under the PSO has good prediction ability 
and better network performance. In addition, by improving 
and optimizing the genetic algorithm through global search, 
the established GA-BP neural network has higher estimate 
accuracy (Ref. 24).

Through the above analysis, the intelligent algorithm has a 
good application advantage in FSW. However, the intelligent 
prediction and control of welded joint performance of alumi-
num alloy 2219 thick plate is still in the exploration stage. In 
the welding process, due to the increase of plate thickness, 
the axial force required for welding increases sharply, and the 
welding temperature distribution in the direction of welding 
thickness becomes more uneven, which induces the decrease 
of tensile strength about welded joints. Therefore, effective 
prediction of welding temperature, axial force, and post-
weld tensile strength can ensure welding quality. Therefore, 
we establish the prediction model of the peak temperature 
and axial force, and the prediction model of the weld tensile 
strength. We propose a new method to predict weld tensile 

Fig. 1 — Friction stir welding machine.
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strength, which is of great significance to welding quality 
improve.

FSW Experiment of Aluminum Alloy 2219 
Thick Plate

The experiment is conducted on the friction stir welding 
machine tool of Shanghai Top Numerical Control Technology 
Co. Ltd., as shown in Fig. 1. The shoulder radius of the FSW 
joint tool is 16 mm, tool pin length is 17.8 mm, and radius of 
the tool pin is between 3.5 mm and 7.5 mm. The tool pin has 
a left-handed thread. Using a machine tool with the German 
HBM company C2 series force sensor, the measuring range of 
the axial force is 0–400 kN; it provides measurement means 
for establishing data sets of temperature, axial force, and 
weld tensile strength in the welding area. Clean welds with 
alcohol before welding to keep the surface of welds clean.

The material used in the test is aluminum alloy 2219-T8, it 
is Al-Cu-Mn high strength aluminum alloy, the heat treatment 
process is cold processing after solid solution treatment, and 
then artificial aging. and the plate size is 300 × 150 × 18 mm 
(length × width × thickness). Table 1 shows the analysis of 
chemical composition by X-ray fluorescence spectrometer 
(XRF-1800). Table 2 shows the analysis of the mechanical 
properties of the base metal by electronic universal testing 
machine DNS-300.

Figure 2 shows the FSW morphology of 2219-T8 aluminum 
alloy. After welding, we cut two kinds of tensile specimens 
from 18-mm-thick FSW joint, we first cut it vertically along 
the seam layer with a thickness of 6 mm, as shown in Fig. 3A; 
the other is cut along the weld section direction, including 
a complete weld structure, the thickness is 6 mm, as shown 
in Fig. 3B. According to GB/T 228.1—2021, metal materials 
at room temperature tensile test method to determine the 
sample size. We used the electronic universal testing machine 
DNS-300 for tensile tests. Figure 4 shows the macro fracture 
morphology of the joint.

We use the temperature field distribution detection 
system of FSW based on a multichannel K-type thermocouple 
developed by the research group, realize the temperature 
measurement during the welding process. The system has a 

resolution of 0.1°C, and the test accuracy is 2.5°C. We select 
different welding parameters (rotational speed and weld-
ing speed) for FSW experiments. The installation position of 
the thermocouple in the workpiece is shown in Fig. 5. A1, A2, 
A3, A4, A5 are the temperature measurement point selected 
on the forward side of workpiece welding. R1, R2, R3, R4, R5 
are the temperature measurement point selected on the 
backward side of workpiece welding. During welding, tem-
perature changes on the forward side and backward side of 
the selected weld feature points were measured to obtain 
the welding temperature required for the establishment of 
the prediction model.

Prediction of Peak Temperature and  
Axial Force by PSO-BP Neural Network

Through the FSW experiment of aluminum alloy 2219-T8 
thick plate, gain various process parameters, physical quan-
tities during welding, and tensile strength data. The peak 
temperature and axial force are affected by welding param-
eters in the welding process. Therefore, the establishment of 
the correlation model between the peak temperature, axial 
force, and the process parameters will provide a basis for 
the regulation of welding process parameters. The PSO-BP 
has high prediction accuracy in multiobjective optimization. 
Therefore, we predict peak temperature and axial force by 
PSO-BP neural network.

Determination of PSO-BP Neural Network 
Structure

BP neural network automatically learns and stores data 
without specifying the function between input and output in 
advance, and has no limitation on the number of inputs and 
output about the prediction model, often used in multivari-
able coupled process systems. The input layer, hidden layer, 
and output layer constitute the complete BP neural network. 
Figure 6 depicts the general structure of the BP neural net-
work. There is a nonlinear continuous transfer function in 
the hidden layer, so that the nodes in the hidden layer can 
transmit information like the neurons in the human brain, the 

Table 1 — Chemical Compositions of 2219 Aluminum Alloy (wt-%)

Cu Mn Fe Si Zn V Ti Zr Mg Al

6.21 0.29 0.12 0.15 0.06 0.08 0.03 0.12 0.02 Bal.

Table 2 — Mechanical Properties of 2219 Aluminum Alloy Base Material

Tensile 
Strength 
Rm (MPa) 

Yield Strength 
Rp0.2 (MPa)

Percentage Elongation  
after Fracture A (%)

Microhardness  
(HV)

435 405 5.3 142
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neural network has the learning ability. BP neural network is 
a feed forward neural network and it has strong flexibility.

Figure 6 shows that the input data X1, X2, L, Xn, O1, O2, L, Om 
are the predicted value of network output.  wij, wjk represent 
the connection weights between different layer structures. 
aij, bij indicate the threshold between layer structures. 

𝑙𝑙 = 𝑛𝑛 − 1 

𝑙𝑙 = √𝑚𝑚 + 𝑛𝑛 + 𝑟𝑟 

	

𝑙𝑙 = log! 𝑛𝑛 
	

 
where r is any constant between 0 and 10; n and m are input 
layer and output layer node; and n and m are related to exper-
imental data. l is the number of hidden layer nodes (Ref. 25).

The PSO algorithm initializes the particle swarm with 
velocity and position in the solution space to simulate for-
aging birds. Each particle corresponds to a fitness value and 
represents a potential solution. How fast a particle moves 
depends on its speed, and how far it moves depends on its 
position. Particles move within the potential solution space, 
updating individual and population speeds and positions 
through individual and population extremes. The particle is 
updated every iteration, and the corresponding individual 

extreme value and population extreme value will also be 
adjusted until the optimal individual is found. At present, 
this algorithm has been widely used in data fitting, intelligent 
control, network optimization, and other fields.

We use the three-layer BP neural network structure with a 
single hidden layer to accurately predict the peak tempera-
ture and axial force of FSW of aluminum alloy 2219-T8 thick 
plate. Input is welding process parameters, and the peak 
temperature and axial force are used as the output predictive 
value. Thus, it can be determined that the number of nodes 
in both the input layer and output layer is 2.

The nodes in the hidden layer structure of the BP neural 
network influence output. If there are too many, it will lead 
to longer running times, the work efficiency will be reduced, 
and the network will be overfitting. If there are too few, the 
neurons in the network become less able to learn, and the 
training accuracy cannot be guaranteed, which results in 
underfitting. Since the input layer node about the BP neural 
network FSW peak temperature estimation model is 2, the 
output layer node is 2. According to the formula (1), (2), and 
(3), the range of hidden layer nodes is 1–12. Therefore, Fig. 
7 represents the structure of BP neural network peak tem-
perature and axial force prediction model by PSO. 

Prediction Model of Peak Temperature 
and Axial Force Based on PSO-BP Neural 
Network

Table 3 shows the peak temperature and axial force mea-
sured in the FSW experiment of aluminum alloy 2219-T8 thick 
plate.

(1)

(2)

(3)

Fig. 2 — Friction stir welding weld morphology of 2219-T8 aluminum alloy.

Fig. 3 — Schematic diagram of tensile specimen: A — Vertical weld direction; B — weld section direction.

A B
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Table 3 — Peak Temperature and Axial Force of Various Process Parameters

Group Rotational 
Speed (r/min)

Welding 
Speed (mm/min)

Peak Temperature 
(°C)

Axial Force 
(kN)

1 300 50 529.2 50.2

2 300 75 522.9 48.6

3 300 100 500.9 45.4

4 300 125 521.6 57.4

5 300 150 499.7 51.2

6 300 175 491.0 52.1

7 350 50 519.8 53.3

8 350 75 517.5 43.4

9 350 100 507.9 42.5

10 350 125 503.9 48.8

11 350 150 495.3 50.1

12 350 175 483.6 60.1

13 400 50 522.2 53.6

14 400 75 531.9 42.3

15 400 100 525.3 46.6

16 400 125 508.2 45.1

17 400 150 504.6 36.1

18 400 175 499.3 40.5

19 420 100 527.5 44.4

20 450 50 515.3 35.9

21 450 75 512.3 40.5

22 450 100 506.8 43.4

23 450 125 501.5 47.2

24 450 150 497.8 45.3

25 450 175 485.1 46.2

26 460 70 510.6 31.5

27 480 65 519.8 37.2
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The steps for constructing the prediction model of peak 
temperature and axial force by the PSO-BP neural network 
are as follows:

1. Input peak temperature and axial force data into the 
neural network model.

2. Create a batch of particle swarm needed by the model, 
and randomly assign to this group of particles forward speed 
and position in the solution set of possible solutions. The 
particle members will get their own extremum pbest, and the 
whole will have extremum Gbest.

3. Modify the velocity and direction of the particle mem-
bers, as follows:

𝑉𝑉!"#$% = 𝜔𝜔𝜔𝜔!"# + 𝑐𝑐%𝑟𝑟%(𝑃𝑃!"# − 𝑋𝑋!"# ) + 𝑐𝑐&𝑟𝑟&,𝑃𝑃'"# − 𝑋𝑋!"# - 
 

𝑑𝑑 = 1,2,… , 𝐷𝐷 

𝑋𝑋!"#$% = 𝑋𝑋!"# + 𝑉𝑉!"#  
𝑖𝑖 = 1,2,… , 𝑛𝑛 

 
where w is inertia coefficient; D is solution set dimension; t is 
the current correction frequency; Vid is speed of membership;  
Xid is the direction of progress; c1 and c2 are the acceleration 
coefficient, where c1 = c2 = 1.49; r1 and r2 appear randomly 
between 0 and 1.

4. According to neuron node connection weights and 
threshold information contained in each particle, the spe-
cific function values of the members are calculated based 
on BP neural network training error. The following is function 
value calculation:

𝐹𝐹 =
𝑘𝑘

∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦! − 𝑜𝑜!)"
!#$

 

The proportional coefficient is k; the experimental value 
of the i output node is yi; and the predicted value of the i 
output node is oi.

5. When the iteration stops, the optimal individual calcu-
lated by the algorithm is passed to BP neural network, giving 
required connection weights and thresholds to network.

6. Input peak temperature and axial force data to predict 
(Refs. 26, 27).

GA does not have selection, crossover, and mutation 
processes, and the speed of the algorithm is relatively fast. 
Therefore, according to the above steps, set the number of 
particle swarm to 10, and the number of iterations to 20. 
Figure 8 exhibits the flow chart of peak temperature and 
axial force prediction by PSO-BP neural network.

(4)

(5)

(6)

Table 3 — continued

Group Rotational 
Speed (r/min)

Welding 
Speed (mm/min)

Peak Temperature 
(°C)

Axial Force 
(kN)

28 480 75 498.3 36.6

29 500 75 509.1 32.4

30 500 85 493.7 33.5

Fig. 4 — Macro fracture morphology of the joint. A — 
Top view of fracture location; B — fracture section.

A

B
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Prediction Results and Discussion of  
Peak Temperature and Axial Force

We used PSO-BP neural network to build the dual-objective 
estimation model for peak temperature and axial force of 
18-mm-thick 2219-T8 aluminum alloy. Using the experimental 
data in Table 3, 20 groups of experimental data are extracted 
randomly to establish a dual-objective prediction network 
for peak temperature and axial force, so that it can learn 
and predict. The remaining 10 groups of experimental data 
verify the accuracy of the network created. Figure 9 reveals 
the fitness curve. The fitness value does not change after 
four iterations. PSO algorithm transmits the best individual 
to the BP neural network for network training. 

Figure 10 illustrates the contrast between model output 
and experimental values. Overall, the predicted values about 
the peak temperature and the axial force are in keeping with 
the experimental values. There is no overfitting or under-
fitting phenomenon. Figure 11 illustrates the prediction 
error about the established estimation model of peak tem-
perature and axial force by the PSO-BP neural network. The 
maximum relative error of peak temperature is 2.9%, the 
average relative error is 1.2%. The maximum relative error 
of axial force estimation is 10.3%, the average relative error 
is 5.4%. Therefore, the established prediction model about 
peak temperature and axial force by the PSO-BP neural net-
work is effective. 

Fig. 7 — Prediction model of peak temperature and axial force based on PSO-BP neural network.

Fig. 6 — BP neural network general structure.Fig. 5 — Location of thermocouple distribution.
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Prediction of Tensile Strength Based on 
GA-BP Neural Network

In the FSW process, different welding process parame-
ters affect welding temperature and axial force, the welding 
temperature and axial are important factors influencing the 
tensile strength of the weld. Therefore, we establish the rela-
tionship model between welding peak temperature, axial 
force, and tensile strength, and propose a new method to 
predict weld tensile strength, which is important for welding 
quality control. After the genetic algorithm optimized the 
BP neural network, the performance of the model is greatly 
improved. We establish a prediction model of weld tensile 
strength based on the GA-BP neural network.

Determination of GA-BP Neural Network 
Structure

GA is a global optimization method that simulates biologi-
cal genetic mechanisms and evolution in nature. It introduces 
the biological evolutionary principle of survival of the fittest 
in nature into the algorithm, encodes the initial population 
information, and uses the fitness function to calculate the 
fitness value of everyone in the population, through chromo-
some selection, crossover and mutation, individual genes, 
and fitness values in the population change. Individuals with 
better fitness values are retained and transferred to the next 

generation, while those with poor fitness values are elimi-
nated. The new population formed after one iteration will 
inherit the information of the previous generation and be 
superior to the previous generation, and iterate repeatedly 
until the optimal individual is found. All the components of 
GA algorithm include running parameters, chromosome 
coding, fitness function, and genetic manipulation. GA has the 
characteristics of global optimization. After global optimiza-
tion, the optimal region is searched, and optimal connection 
weights and thresholds are obtained by the BP neural net-
work so that the tensile strength of a welded joint can be 
predicted more accurately based on the optimized BP neural 
network. GA optimization weight and threshold principle is 
to use the selection, crossover, and mutation operation of 
genetic algorithm, through the algorithm iteration update 
to find the optimal connection weight between each neuron 
of BP neural network and the threshold of each neural node. 

Fig. 8 — Prediction process of peak temperature and 
axial force based on PSO-BP neural network.

Fig. 9 — Variation curve of fitness value.

Fig. 10 — Comparison of model prediction results.
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The population individuals set by the algorithm carry all the 
weight and threshold information required by a neural net-
work. The individuals calculate the fitness value through the 
fitness function, and the GA finds the individuals containing 
the best fitness value through genetic manipulation. In the 
prediction part of the BP neural network, the optimal indi-
vidual obtained by GA is used to assign the initial connection 
weight and threshold value between each neuron node of the 
network, and the network reads the input temperature data 
for training, and then the prediction function can be realized.

First, we edit the initial connection weights and thresholds 
about the BP neural network under the genetic algorithm 
to gain the optimal population of individuals. Then the BP 
neural network adjusts the connection weights and thresh-
olds through the best individual. Then, the tensile strength 
of the welded joint is predicted based on the GA-BP neural 
network. Figure 12 illustrates the structure of the GA-BP 
neural network for the tensile strength of the FSW joint.

Fig. 12 — Structure of tensile strength prediction model based on GA-BP neural network.

Fig. 11 — Prediction error of peak temperature and axial force by PSO-BP neural network. A — Peak temperature 
relative error; B — axial force relative error.

A B

20-s | WELDING JOURNAL



Table 4 — Peak Temperature, Axial Force, and Tensile Strength

Group Peak  
Temperature (°C)

Axial 
Force (kN)

Tensile 
Strength (MPa)

1 522.9 48.6 303.7

2 522.9 48.6 308.4

3 500.9 45.4 310.0

4 500.9 45.4 303.1

5 521.6 57.4 322.5

6 521.6 57.4 328.9

7 517.5 43.4 319.1

8 517.5 43.4 271.4

9 507.9 42.5 313.4

10 507.9 42.5 291.3

11 503.9 48.8 323.6

12 503.9 48.8 293.2

13 531.9 42.3 299.9

14 531.9 42.3 287.8

15 525.3 46.6 316.4

16 525.3 46.6 337.3

17 508.2 45.1 327.4

18 508.2 45.1 288.8

19 512.3 40.5 299.1

20 512.3 40.5 265.5

21 503.8 43.4 296.3

22 503.8 43.4 304.7

23 501.5 47.2 309.4

24 501.5 47.2 317.8
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Prediction Model of Tensile Strength Based 
on GA-BP Neural Network

To have enough data to train the model to ensure accuracy, 
we performed a series of tensile experiments. Table 4 exhibits 
experimental data about peak temperature, axial force, and 
tensile strength of welded joints.

The tensile strength prediction model established by 
GA-BP was obtained by the following steps:

1. Train tensile strength data in Table 4 by GA-BP neural 
network model. 

2. Build the initial population, population size set to 20, 
and use real coding. The coding length is operated based on 
the following formula:

𝐿𝐿 = 𝑛𝑛 × 𝑙𝑙 + 𝑙𝑙 ×𝑚𝑚 + 𝑙𝑙 +𝑚𝑚 

3. The fitness function value of training error about BP 
neural network is calculated by the following formula:

𝐹𝐹 = 𝑘𝑘 $%𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦! − 𝑜𝑜!)
"

!#$

. 

where proportional coefficient is k, predicted value of the 
first output node of the neural network is yi, predicted value 
of the i output node is oi.

4. The probability pi of each i selected by the roulette 
method is operated by the following formula:

𝑓𝑓! =
𝑘𝑘
𝐹𝐹!

 

𝑝𝑝! =
𝑓𝑓!

∑ 𝑓𝑓!"
#$%

 

where fitness value of individual i is Fi, population number is N.
5. Chromosome genetic information is crossed by real 

numbers, and the genetic information of the k chromosome 
ak and the l chromosome al after crossing at j position is as 
follows:

!
𝑎𝑎!" = 𝑎𝑎!"(1 − 𝑏𝑏) + 𝑎𝑎#"𝑏𝑏
𝑎𝑎#" = 𝑎𝑎#"(1 − 𝑏𝑏) + 𝑎𝑎!"𝑏𝑏

 

 
where b appears randomly between 0 and 1.

6. After the last step about the operation, genetic infor-
mation of the chromosome is mutated with a set probability. 
The genetic information of the j gene aij mutation of the i 
individual as follows:

𝑎𝑎!" = #
𝑎𝑎!" + %𝑎𝑎!" − 𝑎𝑎#$%' × 𝑓𝑓(𝑔𝑔)			𝑟𝑟 > 0.5
𝑎𝑎!" + %𝑎𝑎#!& − 𝑎𝑎!"' × 𝑓𝑓(𝑔𝑔)			𝑟𝑟 ≤ 0.5

 

amax and amin are upper and lower bounds about gene aij, 
respectively, f(g) = r2 (1-g/Gmax)

2, r2 is the random number,  g 
is the modification number, Gmax is the maximum evolution 
number, and r appears randomly between 0–1.

7. When the GA loop stops, complete the optimization of 
the connection weights required. 

8. Use trained BP neural network to predict test dates 
(Refs. 28, 29).

Through the above steps, we optimize the BP neural net-
work, set the population size to 20, the number of iterations 

(7)

(8)

(9)

(10)

(12)

Fig. 14 — Variation curve of fitness value.

Fig. 13 — Prediction model of tensile strength of FSW 
joint based on GA-BP neural network.

(11)
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to 20, the crossover probability to 0.2, and the mutation 
probability to 0.1. Figure 13 shows the prediction process 
of the FSW joint tensile strength prediction model by the 
GA-BP neural network.

Prediction Results and Discussion of 
Tensile Strength

The tensile strength prediction model is established by 
the GA-BP neural network, using Table 4 axial force, welding 
peak temperature, and tensile strength data. The training 
data is obtained by randomly selecting 14 sets of samples 
from the table, and another 10 sets of data are selected as 
validation samples to verify the estimation accuracy. After 
the average fitness value is close to 10 iterations, the fitness 
value does not change. GA passes the best individual to the 
BP neural network for network training. Figure 14 reveals 
the fitness curve. 

Figure 15 depicts a comparison between predicted and 
experimental values. The predictive value is in good agree-
ment with the experimental results, indicating that the curve 
fits well and there is no overfitting phenomenon, which 
reflects the great advantage of the GA-BP neural network 
in predicting tensile strength.

The relative error of the welded joint tensile strength 
prediction model is shown in Fig. 16. It shows the maximum 
relative error of FSW joint tensile strength prediction based on 
the GA-BP neural network is 5.2%, average relative mistake 
is 2.3%. Thus, the GA-BP neural network is used to realize 
high-precision prediction of weld tensile strength.

Conclusions

Aiming at the aluminum alloy 2219-T8 thick plate FSW 
morphic characteristic detection problem, we conducted the 

FSW experiment of 18-mm-thick aluminum alloy 2219-T8, 
combined the material structure theory and neural network 
intelligence algorithm, and established a prediction model 
of physical parameters (temperature and axial force) and 
tensile strength of aluminum alloy 2219-T8 thick plate during 
FSW. Through these two models, we have realized the predic-
tion of FSW temperature, axial force, and tensile strength of 
aluminum alloy 2219-T8 thick plate, and provide a practical 
method for the implementation of predictive control. The 
research content includes the following two aspects: 

1. Based on the temperature measurement experimental 
data of FSW, we take the rotational speed and welding speed 
of tool as input parameters, the FSW peak temperature and 
axial force as output parameters, build a prediction model 
of the peak temperature, and the axial force by the PSO-BP 
neural network. The maximum relative error about the peak 
temperature is 2.9%, and the average relative error is 1.2%. 
The maximum relative error for axial force prediction is 10.3%, 
and the average relative error is 5.4%. Confirm that the estab-
lished prediction model of peak temperature and axial force 
by the PSO-BP neural network is effective. 

2. Based on the data of peak temperature, axial force, and 
tensile strength of the joint, we take the FSW peak tempera-
ture and axial force as input parameters, the tensile strength 
of welded joint as output parameters, and establish an esti-
mation model about the tensile strength based on GA-BP 
neural network. The maximum relative error is 5.2%, and 
the average relative error is 2.3%, achieving high-precision 
prediction of weld tensile strength.
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